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Abstract: The study focuses on a mathematical study of a prey-predator ecological

system incorporating Holling Type-II response and discussed the dynamics of the

system with pollutants. The aim of the study is to decode the dynamic framework

under the influence of toxicants. In the system it is considered that only the prey

population is negatively effected by pollutants / toxins. Using stability requirements,

all the possible equilibrium points of the system are discussed for local stability. It

has been noted that when the pollutants / toxicant effect present, the system under

consideration will survive but population reduces. Lastly numerical simulation is

done to validate the analytical findings.
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1. Introduction

Ecologists still have a difficult time solving the problems that arise from the pres-

ence of contaminants in ecosystems since they affect the biological populations in

both terrestrial and aquatic ecosystems. The development rate and carrying capac-

ity of biological organisms are generally slowed down by pollutants and toxicants.

Preserving species variety and preventing extinction are the overarching objectives of

ecologists and environmentalists in the face of ecological stress.Mathematical models

have lately emerged as crucial tools and techniques for researching prey-predator food

cycles and forecasting the survival or extinction of species [1, 2, 3].

Because of its widespread existence and importance, the dynamical study of prey

populations and the animals that make up these populations have long been and

will continue to be the core subjects in the discipline of ecology. Despite their ap-

parent simplicity, the dynamical systems involved in the mathematical modelling of
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predator-prey dilemmas frequently lead to complex and difficult difficulties when they

are thoroughly studied and analysed [4]. The foundations of modelling in ecosystem

populations involve revealing the relevant prey and predator through mathematical

models that take into account certain aspects of well system behaviour [5, 6].

Prey predator ecological systems are dynamically modelled, and this process is fre-

quently evolving. An organised mathematical model of the prey-predator can go for-

ward to a clear understanding of the viable path to the necessary changes.Additionally,

several writers have employed mathematical models to comprehend the holling type

II responses on predator-prey systems [7, 8]. While some authors have included the

Allee effect in the prey growth function and examined the holling type II models [4, 7],

the logistic equation is typically thought of as the prey’s growth in these mathemati-

cal models of predator and prey that employ holling type II functional responses [9].

In the last few years, a lot of research has been done using mathematical models to

examine the dynamic behaviour of tri-trophic level food chains [10, 11].

In the last decade, several research have examined the impact of pollutants on bi-

ological populations in contaminated environments, employing mathematical models

[1, 2, 3, 12, 13, 14, 15]. In a study by the authors [16], the food chain of nonlin-

ear dynamics of algae/phytoplankton toxin emission on the system is examined in

relation to a marine example including three species and a food chain ecosystem of

algae, zooplankton, and molluscs. Another marine example [10] is a tri-species food

chain ecosystem made up of phytoplankton and zooplankton fish. Through study,

the researchers have discovered that the toxin-producing phytoplankton lowers the

grazing pressure on zooplankton species and that the dynamics of food-chain systems

exhibit very little chaotic behavior [17, 18, 19].

The focus of this study is on a nonlinear mathematical model of ecological prey

and predator populations in a polluted environment, with a functional response of

Holling type 2. The significance of ecological system survival has been emphasized,

and numerical evidence is demonstrated with the use of MATLAB.

2. The Mathematical Model

In this mathematical model, x(t) is the density of prey population, y(t) is the

density of intermediate predator population, z(t) is the top predator population and

c(t) is the concentration of pollutants / toxicant. r is the intrinsic growth of prey, k

is the carrying capacity, a1 and a2 are the predation rates of prey and intermediate

predator populations. e1 and e2 are the conversion rates. b1 is the death rate of prey
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by direct toxicant concentration on prey population. d2 and d3 are the death rates of

intermediate and top predator populations respectively. Q0 is the harmful pollutant

or toxin which is external input into the environment. b2 is washout rate and d4 is

the perish of population by toxic concentration.

In the mathematical model u/(1+u), (u = x or y), is the interactions of populations,

considered by the functional response of Holling type-II. The prey predator three

population model is described by a nonlinear differential equations:

dx

dt
= x

(
r(1− x

k
)− a1y

1 + x
− b1c

)
dy

dt
= y

(
e1x

1 + x
− a2z

1 + y
− d2

)
(1)

dz

dt
= z

(
e2y

1 + y
− d3

)
dc

dt
= Q0 − b2c− d4xc

with initials: x(0) > 0, y(0) > 0, z(0) > 0, c(0) = f(0) ≥ 0.

3. Model Analysis

Now we will discuss the the equilibrium points of model (1). The equilibrium points

of the model are obtained by considering dx
dt

= dy
dt

= dz
dt

= dc
dt

= 0.

3.1. Equilibria of Model. The model (1) has four positive equilibrium in x, y, z,

c space namely, Ê0(0, 0, 0, ĉ), Ë1(ẍ, 0, 0, c̈), Ẽ2(x̃, ỹ, 0, c̃) and Ē3(x̄, ȳ, z̄, c̄). We prove

the existence of Ê0, Ë1, Ẽ2 and Ē3 as follows:

Ê0(0, 0, 0, ĉ) point: The existence of Ê0 is obvious.

From the fourth equation of (1), we get Q0 − b2ĉ = 0 that is

ĉ =
Q0

b2
(2)

Ë1(ẍ, 0, 0, c̈) point: From the first equation of (1), we get r(1− ẍ
k
)− b1c̈ = 0

ẍ =
k

r
(r − b1c̈) (3)

From the fourth equation of (1), we get Q0 − b2c̈− d4ẍc̈ = 0

A1c̈
2 − A2c̈+ A3 = 0 (4)

where, A1 = kd4b1, A2 = rkd4 + rb2, A3 = rQ0. The equation (4) is positive under

conditions.

Ẽ2(x̃, ỹ, 0, c̃) point: From the first equation of (1), we get (r(1− x̃
k
)− a1ỹ

1+x̃
− b1ỹ = 0

ỹ = A4x
2 + A5x+ A6 (5)
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where, A4 = − r
ka1

, A5 =
r
a1

− r
ka1

− b1ỹ
a1
, A6 =

r
a1

− b1ỹ
a1
.

From the second equation of (1), we get e1x̃
1+x̃

− d2 = 0, that is

x̃ =
d2

e1 − d2
(6)

if e1 > d2. From the fourth equation of (1), we get Q0 − b2c̃− d4x̃c̃ = 0

c̃ =
Q0

b2 + d4x̃
. (7)

Ē3(x̄, ȳ, z̄, c̄) point: From the first equation of (1), we get (r(1− x̄
k
)− a1ȳ

1+x̄
− b1c = 0

ȳ = A4x
2 + A5x+ A6 (8)

where, A4 = − r
ka1

, A5 =
r
a1

− r
ka1

− b1c̄
a1
, A6 =

r
a1

− b1c̄
a1
.

From the second equation of (1), we get e1x̄
1+x̄

− a2z̄
1+ȳ

− d2 = 0

z̄ =
e1
a2

(
x̄

1 + x̄
) +

e1
a2

(
x̄ȳ

1 + x̄
)− d2ȳ

a2
− d2

a2
(9)

From the third equation of (1), we get e2ȳ
1+ȳ

− d3 = 0

ȳ =
d3

e2 − d3
(10)

if e2 > d3. From the fourth equation of (1), we get Q0 − b2c̄− d4x̄c̄ = 0

c =
Q0

b2 + d4x̄
. (11)

3.2. Stability of Model. The stability of considered equilibriums are discussed from

the linearlization results of model (1) around the equilibrium point. For linearizing,

a Jacobian matrix of model (1) for the equilibrium point E = (x, y, z, c) :

J(f(x, y, z, c)) =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂c

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂c

∂f3
∂x

∂f3
∂y

∂f3
∂z

∂f3
∂c

∂f4
∂x

∂f4
∂y

∂f4
∂z

∂f4
∂c


where dx

dt
= f1(x, y, z, c),

dy
dt

= f2(x, y, z, c),
dz
dt

= f3(x, y, z, c) and
dc
dt

= f4(x, y, z, c).

The matrix components of J(f(x,y,z,c)) is ∂f1
∂x

= r − 2rx
k

− a1y
1+x2+2x

− b1c,
∂f1
∂y

= − a1x
1+x

,
∂f1
∂z

= 0, ∂f1
∂c

= −b1x,
∂f2
∂x

= e1y
1+x2+2x

, ∂f2
∂y

= e1x
1+x

− a2z
1+y2+2y

− d2,
∂f2
∂z

= − a2y
1+y

, ∂f2
∂c

= 0,
∂f3
∂x

= 0, ∂f3
∂y

= e2z
1+y2+2y

, ∂f3
∂z

= e2y
1+y

− d3,
∂f3
∂c

= 0, ∂f4
∂x

= −d4c,
∂f4
∂y

= 0, ∂f4
∂z

= 0,
∂f4
∂c

= −b2 − d4x.

Theorem 1: If ĉ > r
b1

then the equilibrium point Ê0(0, 0, 0, ĉ) is unstable.

Proof: The equilibrium point E1 is substituted to the matrix element of j(f(x,y,z,c)),
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obtained by the matrix j(f(E1)) is

J(f(E0)) =


r − b1ĉ 0 0 0

0 −d2 0 0
0 0 −d3 0

−d4ĉ 0 0 −b2


So, the characteristic equation for J(f(E1)) is

(r − b1ĉ− λ)(−d2 − λ)(−d3 − λ)(−b2 − λ) = 0, (12)

then the eigenvalues obtained are λ1 = r − b1ĉ, λ2 = −d2, λ3 = −d3, λ4 = −b2.

Theorem 2: If ẍ < d2
e1−d2

, ẍ > (r−b1c̈−b2)k
2r+d4k

, then the equilibrium point Ë1(ẍ, 0, 0, c̈) is

locally asymptotically stable.

Proof: The equilibrium point Ë1 is substituted to the matrix element of J(f(x,y,z,c)),

obtained by the matrix J(f(E1)) that is

J(f(E1)) =


P − a1ẍ

1+ẍ
0 −b1ẍ

0 R 0 0
0 0 −d3 0

−d4c̈ 0 0 −b2 − d4ẍ


where P = r − 2rẍ

k
− b1c̈, R = e1ẍ

1+ẍ
− d2. So, the characteristic equation for J(f(E2))

is

(R− λ)(−d3 − λ)(λ2 +M1λ+M2) = 0 (13)

where M1 = −r + 2rẍ
k

+ b1c̈ + b2 + d4ẍ, M2 = −rb2 − rd4ẍ + 2rb2ẍ
k

+ 2rd4ẍ2

k
+ b1b2c̈ +

b1d4c̈ẍ− b1d4ẍc̈.

Then, the eigenvalues obtained are λ1 =
e1ẍ
1+ẍ

− d2,λ2 = −d3.

For the equilibrium point E2 to be locally asymptotically stable, it must be λ1 < 0,

M1>0, M2>0 i.e.,

ẍ<
d2

e1 − d2
(14)

ẍ>
(r − b1c̈− b2)k

2r + d4k
(15)

Theorem 3: If y < d3
e2−d3

, N1N2>N3, then the equilibrium point Ẽ2(x̃, ỹ, 0, c̃) is lo-

cally asymptotically stable.

Proof: The equilibrium point E2 is substituted to the matrix element of J(f(x,y,z)),

obtained by the matrix J(f(E2)) that is

J(f(E2)) =


P − b1c̃ − a1x̃

1+x̃
0 −b1x̃

e1ỹ
(1+x̃)2

S − a2ỹ
1+ỹ

0

0 0 T 0
−d4c̃ 0 0 −b2 − d4x̃
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where P = r − 2rx̃
k

− a1ỹ
(1+x̃)2

, S = e1x̃
1+x̃

− d2, T = e2ỹ
1+ỹ

− d3.

So, the characteristic equation for J(f(E2)) is

(T − λ)(λ3 +N1λ
2 +N2λ+N3) = 0 (16)

where N1 = −r + 2rx̃
k

+ a1ỹ
(1+x̃)2

+ b1c̃− e1x̃
1+x̃

+ d2 + b2 + d4x̃,

N2 = −b1d4x̃c̃+
re1x̃
1+x̃

− rd2 − 2re1x̃2

k(1+x̃)
+ 2rd2x̃

k
− a1e1ỹx̃

(1+x̃)3
+ a1d2ỹ

(1+x̃)2
− b1e1x̃c̃

1+x̃
+ b1d2c̃+

a1e1x̃ỹ
(1+x̃)3

−
((b2 + d4x̃)(r − 2rx̃

k
− a1ỹ

(1+x̃)2
− b1c̃− d2 +

e1x̃
1+x̃

)),

N3 = − b1d4e1x̃2c̃
1+x̃

− b1d4d2x̃c̃
1+x̃

+ ((b2 + d4x̃)(
re1x̃
1+x̃

− rd2 − 2re1x̃2

k(1+x̃)
+ 2rd2x̃

k
− a1e1ỹx̃

(1+x̃)3
+ a1d2ỹ

(1+x̃)2
−

b1e1x̃c̃
1+x̃

+ b1d2c̃+
a1e1x̃ỹ
(1+x̃)3

)),

then the eigenvalues obtained are λ1 = T , y < d3
e2−d3

.

According to Routh-Hurwitz’s criteria for the equilibrium point E2 to be locally

asymptotically stable, the following conditions must be satisfied: N1N2>N3,

N1>0 i.e.,−r + 2rx̃
k

+ a1ỹ
(1+x̃)2

+ b1c̃ − e1x̃
1+x̃

+ d2 − b2 − d4x̃ > 0 ,N2 > 0 i.e.,−b1d4x̃c̃ +
re1x̃
1+x̃

− rd2 − 2re1x̃2

k(1+x̃)
+ 2rd2x̃

k
− a1e1ỹx̃

(1+x̃)3
+ a1d2ỹ

(1+x̃)2
− b1e1x̃c̃

1+x̃
+ b1d2c̃+

a1e1x̃ỹ
(1+x̃)3

− ((b2 + d4x̃)(r −
2rx̃
k
− a1ỹ

(1+x̃)2
− b1c̃−d2+

e1x̃
1+x̃

)) > 0, N3 > 0 i.e.,− b1d4e1x̃2c̃
1+x̃

− b1d4d2x̃c̃
1+x̃

+((b2+d4x̃)(
re1x̃
1+x̃

−
rd2 − 2re1x̃2

k(1+x̃)
+ 2rd2x̃

k
− a1e1ỹx̃

(1+x̃)3
+ a1d2ỹ

(1+x̃)2
− b1e1x̃c̃

1+x̃
+ b1d2c̃+

a1e1x̃ỹ
(1+x̃)3

)) > 0.

Theorem 4: The equilibrium point Ē3(x̄, ȳ, z̄, c̄) is locally asymptotically stable.

Proof: The equilibrium point E3 is substituted to the matrix element of J(f(x,y,z)),

obtained by the matrix J(f(E3)) that is

J(f(E3)) =


m1 − a1x̄

1+x̄
0 −b1x̄

e1ȳ
(1+x̄)2

m2 − a2ȳ
1+ȳ

0

0 e2z̄
(1+ȳ)2

m3 0

−d4c̄ 0 0 m4


wherem1 = r− 2rx̄

k
− a1ȳ

(1+x̄)2
−b1c̄,m2 =

e1x̄
1+x̄

− a2z̄
(1+ȳ)2

−d2,m3 =
e2ȳ
1+ȳ

−d3,m4 = −b2−d4x̄.

So, the characteristic equation for J(f(E3)) is

λ4 + U1λ
3 + U2λ

2 + U3λ+ U4 = 0 (16)

where,

U1 = −(m1 +m4),

U2 = −d4c̄b1x̄+m4m1 + (m1 +m4)(m2 +m3) +m2m3 +
a2e2ȳz̄
(1+ȳ)3

+ a1e1x̄ȳ
(1+x̄)3

,

U3 = b1d4x̄c̄(m2+m3)−m1m4(m2+m3)−(m1+m4)(m2m3+
a2e2ȳz̄
(1+ȳ)3

)−(m3+m4)
a1e1x̄ȳ
(1+x̄)3

,

U4 = −b1d4x̄c̄(m2m3 +
a2e2ȳ2

(1+ȳ)3
) +m1m2m3m4 + (m1m4)

a2e2ȳz̄
(1+ȳ)3

+ (m3m4)
a1e1x̄ȳ
(1+x̄)3

.

According to Routh-Hurwitz’s criteria for the equilibrium point E3 to be locally

asymptotically stable, the following conditions must be satisfied

U1U2U3>U2
3 + U2

1U4,
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U1>0 i.e.,−(m1 +m4)>0,

U2>0 i.e., −d4c̄b1x̄+m4m1 + (m1 +m4)(m2 +m3) +m2m3 +
a2e2ȳz̄
(1+ȳ)3

+ a1e1x̄ȳ
(1+x̄)3

> 0,

U3 > 0 i.e., b1d4x̄c̄(m2 +m3)−m1m4(m2 +m3)− (m1 +m4)(m2m3 +
a2e2ȳz̄
(1+ȳ)3

)− (m3 +

m4)
a1e1x̄ȳ
(1+x̄)3

> 0,

U4 > 0 i.e., −b1d4x̄c̄(m2m3+
a2e2ȳ2

(1+ȳ)3
)+m1m2m3m4+(m1m4)

a2e2ȳz̄
(1+ȳ)3

+(m3m4)
a1e1x̄ȳ
(1+x̄)3

> 0.

It is difficult to interpret the results in ecological terms from the above complicated

expressions, however, numerical examples are taken and graphs are plotted to illus-

trate the dynamical behavior’s of the system.

4. Model Simulation

Numerical simulations are carried out using Matlab software. Model (1) includes

numerical simulations for every equilibrium point in addition to simulations with dif-

ferent parameter adjustments. The primary goal of simulation is to verify analytical

conclusions using numerical simulations and to examine the dynamic behavior of prey

predator populations in the presence of toxicants and crowding. In the simulation,

every figure symbolizes stability.

• For Ë1(ẍ, 0, 0, c̈) point, the following set of parameters have been selected:

r = 1.2; k = 1.199; a1 = 0.123; b1 = 0.75; e1 = 0.008; a2 = 0.9; d2 = 0.095; e2 =

0.024; d3 = 0.09551;Q0 = 0.123; b2 = 0.123; d4 = 0.1985; and observed the

following values:

ẍ = 0.8916, ÿ = 0.0000, z̈ = 0.0000, c̈ = 0.4100.

It is showing that the Ë1(ẍ, 0, 0, c̈) is stable system (see Fig. 1), i.e., when the

toxicant concentration is available in the model the prey population is surviv-

ing. In this model, the intermediate (ÿ) and top (z̈) predator populations are

absent.

• For Ẽ2(x̃, ỹ, 0, c̃) point, the following set of parameters have been selected: r =

3.12; k = 0.2990; a1 = 0.5; b1 = 0.053; e1 = 0.089; a2 = 0.05; d2 = 0.02; e2 =

0.024; d3 = 0.09;Q0 = 0.3823; b2 = 2.123; d4 = 0.6985; and observed the

following values:

x̃ = 0.2902, ỹ = 0.2239, z̃ = 0.0000, c̃ = 0.1645

It is showing that the Ẽ2(x̃, ỹ, 0, c̃) is stable (see Fig.2, 3, 4), i.e., when the

toxicant concentration is available in the model the prey and intermediate

predator populations are surviving.
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Figure 1. Stability behavior of (2.1) around the equilibrium point Ë1(ẍ, 0, 0, c̈).

• For Ē3(x̄, ȳ, z̄, c̄) point, the following set of parameters have been selected: r =

3.12; k = 0.2990; a1 = 0.5; b1 = 0.053; e1 = 0.089; a2 = 0.05; d2 = 0.02; e2 =

0.024; d3 = 0.09;Q0 = 0.3823; b2 = 2.123; d4 = 0.6985; and observed the

following values:

x̄ = 0.6051, ȳ = 0.2841, z̄ = 0.1191, c̄ = 0.0959

It is showing that the Ē3(x̄, ȳ, z̄, c̄) is stable (see Fig.5, 6), i.e., when the toxi-

cant concentration is available in the model the prey population is surviving.

• For Ē3(x̄, ȳ, z̄, c̄) point, the following set of parameters have been selected:

r = 1.000001; k = 2.9956; a1 = 3.9929975; d1 = 1.973; a2 = 0.008; b1 =

0.9; c1 = 0.095; b2 = 0.249; c2 = 0.024;Q0 = 0.09551; d2 = 0.1985; b = 0.223344;

and observed that the system is unstable (see Fig.7, 8).

5. Conclusion

Considered a food chain mathematical which is based on the assumptions in the

model, formulated with the effect of toxicant (see the system (1)). The consid-

ered prey predator mathematical model has four equilibriums, they are Ê0(0, 0, 0, c),

Ë1(ẍ, 0, 0, c), Ẽ2(x̃, ỹ, 0, c) and Ē3(x̄, ȳ, z̄, c). The survival of all the points have been

found and also performed the stability analysis. The Ê0(0, 0, 0, c) equilibrium point

was obvious, other points Ë1(ẍ, 0, 0, c), Ẽ2(x̃, ỹ, 0, c) and Ē3(x̄, ȳ, z̄, c) were locally

asymptotically stable under some analytical conditions. For numerical simulations

we have used Matlab software. All the figures show the stability in nature. With the

help of parameter values, all the analytical results have been verified. It has been
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Figure 2. Stability behavior of (2.1) around the equilibrium point Ẽ2(x̃, ỹ, 0, c̃).

Figure 3. Stability behavior of (2.1) around the equilibrium point Ẽ2(x̃, ỹ, 0, c̃).

observed that the system would be surviving less when the toxicant is present in the

system.
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