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Abstract

In this paper the cost analysis of a two heterogeneous server Markovian queue

with breakdown has been given. In the queueing model the second server has a

threshold for service and if the system breakdown, immediately repair has been

carried out.A cost structure is defined and using genetic algorithm the optimum

cost has been generated numerically for various values of the parameters.
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1 Introduction

Multi server Markoving queueing models are studied by many authors. In the
multi server queueing models thr servers are either homogeneous or heterogeneous. The
homogeneous case is valid only when the service process is mechanically or electrically
controlled. In 1981, Neuts and Takahashi have pointed out that for the queueing
system with two heterogeneous servers, analytical results are analytically intractable.
Even though, some researchers focused their studies on queue with two heterogeneous
servers. The equilibrium analysis for the general input and exponential service time
and with n severs was given in Kendall (1953). A non-constructive existence theorem
for the stationary distribution of general input and general service time was presented
in Kiefer and Wolfowitz (1955). Karlin and Mc.Gregor (1958) obtained the busy period
distribution for the M/M/S queue. Krishnamoorthi (1963) consider a Poisson queue
with two heterogeneous servers and with vilotion of the First-in-First-out principle.

Heffer(1969) has analyzed waiting time distribution of M/Ek/S queue. A
Markovian queuing system with balking and two heterogeneous servers has been
considered in Singh (1970). The author determines the capacity of the slower server
and obtains the optimal service rates. Singh (1973) discussed a Markovian queue with
the number of servers depending upon the queue length. Desmit (1983a, b) presented an
approach to identify the distribution of waiting times and queue lengths for the queue
GI/H2/S. He reduced the problem to the solution of the Wiener-Hopf-type equations
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and then used a factorization method to solve the system.
Lin and Kumar (1984) has analyzed the optimal control of a queueing system

with two heterogeneous servers. Rubinovitch (1985a, b) studied the problem of a
heterogeneous two channels queueing systems. In his first paper he discussed three
simple models and gave the condition when to discard to slower server depending on the
expected number of customer in the system. In the second paper he studied a queueing
model with a stalling concept. In 1999, Abou-Elu-ata and Shawky introduced a simpler
approach to find the condition when to discard the slower server in a heterogeneous two
channels queue.

Barcelo (2003) has obtained an approximation for the mean waiting time of
M/H2b/S queue. Shin and Moon (2009) has carried out an approximate analysis for
M/G/C queue. Arkat and Farahani (2014), has used a partial-fraction decomposition
approach to the M/H2/2 queue. Zhernovyi (2011) analyzed queue with switching of
service modes and threshold blocking of input flow. Kopytko and Zhernovyi (2011)
investigated Markovian queue with switching of service mode.

Kalyanaraman and senthilkumar(2018a) analyzed a two heterogeneous server
markovian queue with switching service models. In the same year the authors discussed
heterogeneous server Markovian queue with restricted admissibility and with reneging.
Kalyanaraman and senthilkumar(2018b) analyzed a two heterogeneous server queue
with restricted adminissibility. In real life, Models of queueing system with different
intensity of service are used for the study of telecommunication process.

In some queueing situations, it can be seen that systems can suddenly break
down such as computer system, communication system, and many other. For example,
consider a machine that always needs some maintenance otherwise it will be break down
and a repair man must be called for repair. this type of queues are called queue with
unreliable server. (Avi-Itzhak and Naor(1963), Gaver(1962), White and Christie(1958),
Thiruvengadam(1963), Federgrune and Green(1986) and Van Dijk(1988)).
Genetic algorithm (GA) is an important optimization method in evolutionary
computational process (Venkataraman, 2009). Several authors including Milton et.al.
(2005) and Agrawal (1999) have explored the genetic operators and their applicability
into the algorithm improvement. In this study, in addition to the steady state analysis
of the models defined and discussed in this thesis, the genetic algorithm (GA) has been
successfully applied to solve an optimization problem relate to cost structure of the
queueing models. The performance of GA algorithm depends on the genetic operator?s
selection, crossover and mutation. How the GA operates is described as follow. Initially,
the population is generated randomly. All the members of the population are tested,
with the help of a fitness function. A reduction of the population is undertaken with
a preference for keeping individuals with higher levels of fitness, letting the rest be
eleminated. Those results represent the main criteria that GA uses to guide the
search. However, the use of these simple but powerful operational concepts allows GA
to create intuitively generations of better individuals using the Select function. This
optimisation strategy found bases in concepts of the natural evolution process, primarily
the Darwinian rule of the survival of the fittest (Poli, 2000). The genetic algorithms
are designed to simulate a biological process, much of the relevant terminology is
borrowed from biology. However, the entities that this terminology refers to in genetic
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algorithms are much simpler than their biological counterparts (Mitchell(1995)). The
basic components common to almost all genetic algorithms are:

∙ a fitness function for optimization

∙ a population of chromosomes

∙ selection of which chromosomes will reproduce

∙ crossover to produce next generation of chromosomes

∙ random mutation of chromosomes in new generation

The fitness function is the function that the algorithm is trying to optimize. The word
fitness is taken from evolutionary theory. It is used here because the fitness function tests
and quantities how to fit each potential solution is. The fitness function is one of the
most pivotal parts of the algorithm. The term chromosome refers to a numerical value
or values that represent a candidate solution to the problem that the genetic algorithm
is trying to solve (Mitchell, (1995)). Each candidate solution is encoded as an array of
parameter values, a process that is also found in other optimization algorithms (Haupt,
and Haupt, (1998)) .If a problem has N parameters, then typically each chromosome is
encoded as an array of N element. That is, the chromosome = (p1, p2, ..., pN ) where each
pi is a particular value of the ith parameter (Haupt, and Haupt, (2004)). It is up to the
creator of the genetic algorithm to devise how to translate the sample space of candidate
solutions into chromosomes. One approach is to convert each parameter value into a bit
string (sequence of 1s and 0s), then concatenate the parameters end-to-end like genes in
a DNA strand to create the chromosomes (Mitchell, (1996)). Historically, chromosomes
were typically encoded this way, and it remains a suitable method for discrete solution
spaces. Modern computers allow chromosomes to include permutations, real numbers,
and many other objects.

The concept of genetic algorithm begins with a randomly chosen assortment of
chromosomes, which serves as the first generation (initial population). Then each
chromosome in the population is evaluated by the fitness function to test how well it
solves the problem at hand. Now the selection operator chooses some of the chromosomes
for reproduction based on a probability distribution defined by the user. The fitter a
chromosome is, the more likely it is to be selected. The selection operator chooses
chromosomes with replacement, so the same chromosome can be chosen more than
once. The crossover operator resembles the biological crossing over and recombination
of chromosomes in cell meiosis. This operator swaps a subsequence of two of the chosen
chromosomes to create two offspring. The mutation operator randomly flips individual
bits in the new chromosomes (turning a 0 into a 1 and vice versa). Typically mutation
happens with a very low probability, such as 0.001. Some algorithms implement the
mutation operator before the selection and crossover operators; this is a matter of
preference. The mutation operator helps protect against this problem by maintaining
diversity in the population, but it can also make the algorithm converge more slowly.
Typically the selection, crossover, and mutation process continues until the number of
offspring is the same as the initial population, so that the second generation is composed
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entirely of new offspring and the first generation is completely replaced. Now the second
generation is tested by the fitness function, and the cycle repeats. It is a common
practice to record the chromosome with the highest fitness (along with its fitness value)
from each generation, or the best-so-far chromosome (Koza, (1994)). Genetic algorithms
are iterated until the fitness value of the best-so-far chromosome stabilizes and does not
change for many generations. This means the algorithm has converges to a solution(s).

Genetic algorithms are used in a variety of applications. Some prominent examples
are automatic programming and machine learning. They are also well suited to modeling
phenomena in economics, ecology, the human immune system, population genetics,
and social systems. In particular, genetic algorithms have been widely used in various
research studies to optimize cost models associated with research problems. For instance,
Lin and Ke (2010) applied the genetic algorithm approach to optimize a multi-server
infinite capacity queueing system using a triadic policy. Similarly, Haung et al. ( 2011)
investigated the coordination of arrivals and services in a finite capacity queueing system
with the triadic policy, and they adopted the genetic algorithm approach to optimize the
cost function for this model. The use of genetic algorithms in optimization problems
has proven to be effective and efficient. By mimicking natural selection and genetic
inheritance, genetic algorithms can find optimal solutions to complex problems. As
such, they have become a popular tool in various fields, including engineering, computer
science, and economics. Jain and Jain ( 2022) developed a cost model for a retrial
queueing system with an unreliable server and voluntary service. They used the Genetic
Algorithm to minimize the system?s cost. In recent studies, numerous researchers have
implemented the Genetic algorithm for the purpose of optimization in their respective
work. Among them are Khalili, and Khah, ( 2020), Malik et al. (2021), Meena et al.
(2022), Liu et al. (2023), Hasani et al. (2022), Sangha and Antala (2024).

In this paper, a two server queueing system with breakdown and a threshold for
second server has been considered. The model hes been completely analysed in steady
state by Kalyanaraman and Kalaiselvi(2019). The model definition and the steady
results are given in section 2. The corresponding cost structure is defined and the
analysis is carried out using genetic algorithm in section 3. A conclusion has been given
in section 4.

2 The Queueing Model

Queueing theory continues to be one of the most extensive theories of stochastic
process. Queueing theory provides an efficient mathematical framework for the
study of several congestion situations arising in different application areas such as
telecommunications, production lines, computer networks, etc. Many server queues
are widely seen in bank. In a bank customers come for service, then the bank staffs
process customers’ requests, and after their services are completed, customers leave
the bank. This is a classical many server queueing system with arrivals, services, and
departures. It can also be observed in other scenarios such as emergency departments
of hospitals, call centers, post offices, railway stations, airports and computers. For
these systems, servers are usually different from each other. They may possess different

ALOCHANA JOURNAL  (ISSN NO:2231-6329)  VOLUME 13 ISSUE 12 2024

PAGE NO: 1141



5

types of skills. Even when they have the same skill, their ability on this skill may
be different. Such servers are called heterogeneous servers. In manufacturing systems,
service systems, telecommunication systems and computer networks breakdown may
occur at any moment. This necessitate the study of queues with breakdown. In practice,
it can be seen that additional servers are provided to reduce congestion when queue
length is too long, for example, in the bank, in the super markets, etc... the decision-
makers often provides another server to reduce the long queue. In our model we assume
that the number of servers working in the queue can be adjusted based on the number
of customers is the system. With all these in mind Kalyanaraman and Kalaiselvi(2019)
considered a two server queueing system with breakdown and a threshold for second
server with the following assumptions :

∙ Arrival to the system follows Poisson process with rate � .

∙ The two servers are heterogeneous, call servers as Server 1 and Server 2.

∙ The service provided by the servers are random periods follows negative
exponential distribution with rates �1 (Server 1) and �2 (Server 2). Also
�1 > �2, � = �1 + �2.

∙ If there are less than K customers in the system the first server works and the
second server stays in ideal state. Once the system size reaches K , the second
server starts work.

∙ The system may breakdown during service(Both the servers are busy) and the
break downs are assumed to occur according to a Poisson process with rate  .

∙ Immediately, the repair takes place, the duration of the repaired period follows
negative exponential distribution with rate � .

∙ Each customer is served by only one server.

∙ The queue discipline is first come first served.

∙ The waiting line capacity is infinite.

Figure 2.1: Schematic representation of the model

ALOCHANA JOURNAL  (ISSN NO:2231-6329)  VOLUME 13 ISSUE 12 2024

PAGE NO: 1142



6

For the mathematical frame work of the above defined model, the following
probabilities has been defined:
pn(t) be the probability that there are n customers in the system at time t , when the
system is in busy state.n ≥ 0, t ≥ 0.
qn(t) be the probability that there are n customers in the system at time t , when the
system is in repair state.n ≥ K
In steady state lim

t→∞

pn(t) = pn, lim
t→∞

qn(t) = qn.

Using general birth death arguments the authors obtained the difference equations,using
the equations they find the following probabilities: The probability of n customers in
the system is

pn =

{

�n1p0, 1 ≤ n ≤ K − 1

�K1 �
n−Kp0Bn−K , n ≥ K

(1)

qn = �K1 p0Cn−K , n ≥ K (2)

p0 =

[

1 + �1

[

1− �K−1
1

1− �1

]

+ �K1

∞
∑

n=K

(

�n−KBn−K + Cn−K

)

]

−1

(3)

where

�1 =
�

�1

; � =
�

�
(4)

A1 =


(�+ �)
(5)

B0 =
��1(�+ �)( + �+ �2)

�(�2 − �1)2 + (�+ �)�1�2(2( + �) + �)
(6)

 1 =
( + �)( + �+ �2)

�2(2( + �) + �)
(7)

�1 =
�(�1(2(�+ ) + �)− ( + �+ �1)(�2 − �1))

(�+ �)�1�2
2(2(�+ ) + �)

(8)

B1 =
 1 −B0�1

�
(9)

Bi =
(�+  + �)Bi−1 − �Bi−2 − �Ci−1�

−(i−1)

�
, i = 2, 3, 4, ... (10)

C0 =


�+ �
(11)

C1 =
�B1 + �A1B0

(�+ �)
(12)

Ci =
�iBi + �Ci−1

(�+ �)
, i = 2, 3, 4, ... (13)

Equation (1), (2) and (3) together represents the probability distribution in steady sate
of the model designed in this article and the stability condition is �

�
< 1.

Using these probabilities we have the following performance measure such as
expected number of customers in the system, second moment of number of customers
in the system and variance of number of customers in the system.
(i)Expected number of customers in the system
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L =

[

�21
[

(1− �K1 )−K�K−1
1 (1− �1)

]

(1− �1)2
+

∞
∑

n=K+1

n�K1 �
n−KBn−K

]

p0 (14)

(ii) Second moment of number of customers in the system

L1 = �1

K−1
∑

n=1

n2pn +
∞
∑

n=K

n2pn (15)

(iii) Variance of number of customers in the system
L2 = L1 − L2 (16)

(iv) A customer’s mean waiting time

W =
L

�
(17)

(v) Probability that both the servers are busy

PB = 1− p0

[

�1 + �

�1

]

(18)

3 Cost analysis

In queueing theory, cost analysis is essential for evaluating the efficiency and financial
performance of service systems, such as customer support lines, production processes,
or transportation services. The cost analysis in queueing theory involves balancing
service costs (e.g., staffing, resources) and waiting costs (e.g., lost productivity, customer
dissatisfaction). This analysis helps in determining optimal levels of service capacity and
balancing costs to improve overall efficiency. This involves analyzing how sensitive the
total cost is to changes in service level, arrival rates, or service rates. Sensitivity analysis
can help in making decisions when demand is variable or when costs fluctuate. A
total expected cost function related to the model discussed i this paper has been formed
wih K as the decision variable. The aim of developing such a function is to determine
the optimal threshold K, say K*,so as to minimize the cost function. On the basis
of the definition of each cost element and the corresponding performance measures.
Tc = C1�1 + C2�2 + CℎL+ CIp0 + CBPB + CWW (19)

Where C1 - The rate at which first service is provided per unit time
C2 - The rate at which second service is provided per unit time
Cℎ - Holding cost per customer per unit time
CI - Cost per unit time for idle period
CB - unit cost incurred during period of server activity
CW - waiting cost of a customer per unit time

The genetic algorithm is applied to find minimum total cost. The general steps of
the GA implemented to our models are Input: Fitness function, Decision variables
Output: Best fitness(optimal) value, Best (optimal) solution
Step 1: Initialize population size
Step 2: Generate initial solution
Step 3: Evaluate the fitness value
Step 4: Select parameters based on fitness
Step 5: If criteria satisfied then get the optimal solution else cross over mutation generate
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next generation goto Step3.

The results are generated using R-programming.

Table 3.1: Expected cost ( � = 7,  = 6, Cℎ = 5, Cb = 7, C1 = 2, C2 = 3 )
N K � �1 �2 L M Minimum total expected cost

500 10 6.373002 15.00298 6 11.11171 0.1612287 437.4315

30 14.28571 15.0147 11.11171 0.1612287 437.5194

100 7.346971 15.01247 11.11171 0.1612287 437.5027

1000 10 10.33501 15.02052 6 11.11171 0.1612287 437.563

30 19.39297 15.0034 11.11171 0.1612287 437.4347

100 9.710176 15.01525 11.11171 0.1612287 437.5236

10000 10 6.026744 15.00236 6 11.11171 0.1612287 437.4269

30 11.64008 15.00032 11.11171 0.1612287 437.4116

100 7.7867246 15.01092 11.11171 0.1612287 437.4911

500 10 14.12562 6 15.01962 11.11171 0.1612287 437.5563

30 6.438494 15.00101 11.11171 0.1612287 437.4168

100 17.608 15.00524 11.11171 0.1612287 437.4485

1000 10 7.426545 6 15.00551 11.11171 0.1612287 437.4505

30 14.54522 15.0012 11.11171 0.1612287 437.4182

100 13.37625 15.00562 11.11171 0.1612287 437.4513

10000 10 9.014066 6 15.01183 11.11171 0.1612287 437.4979

30 18.53312 15.00775 11.11171 0.1612287 437.4673

100 8.244244 15.00723 11.11171 0.1612287 437.4634

Fot the given values of cost coefficients,  and � the minimum total cost function is
calculted, shown in the last column of the table 3.1 using genetic algorithm. In the
caculation process, N (500,1000,10000), K (10,30,100) ∣mu2 = 6 the corresponding
optimum arrival rate, optimum service rate mu1 are shown in 3rd and 4tℎ column of
the table 3.1. Also by fixing mu1 = 6 , the optimum service rate mu2 is calculated and
is shown in the fifth column.

Figure 3.2: Expected total cost
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Figure 3.3: Expected Total cost

Figures 3.2 and 3.3 presents the curve of total cost againt number of cycles.

4 Conclusion

In this paper, cost analsis has been obtained for total cost of the system of the
given queueing model using genetic algorithm. Numerical illustrations are provided.
Our computational experience shows that, the minimum total cost is obtainable.
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