ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

Mobile Botnet Detection Using Machine Learning -An
SVM-Based Approach

1t Dr.Sonali Patil ,2"¢ Priyanshu Ajay Bakare, 3 Siddharth Pitre, 4™ Aditya Kulthe,5" Aniket Gandhe,
6™ Siddhanth Pardhe
Department of Information Technology, Hope Foundation’s International Institute of

Information Technology (I2IT), Pune, India

Abstract —The rapid proliferation of mobile and IoT devices has fundamentally transformed the digital landscape,
yet this expansion has simultaneously introduced critical security vulnerabilities that malicious actors eagerly
exploit. Mobile botnets represent one of the most sophisticated threats in contemporary cybersecurity, consisting
of networks of compromised smartphones controlled remotely by attackers to execute coordinated malicious
activities including DDoS attacks, credential theft, spam distribution, and data exfiltration. Traditional signature-
based detection mechanisms have proven increasingly inadequate against evolving threats that employ
polymorphic techniques and zero-day exploits. This research presents a comprehensive machine learning
framework utilizing Support Vector Machine (SVM) algorithms for effective mobile botnet detection. Our
approach incorporates both static feature analysis from Android application packages and network traffic
classification techniques, extracting 25 discriminative features that characterize botnet behaviour. The system was
rigorously evaluated using benchmark datasets including CTU-13, CICIDS2017, and ISCX Android Botnet
Dataset. Experimental results demonstrate exceptional performance with 96.8% accuracy, 95.4% precision, 96.1%
recall, and 95.7% F1-score, while maintaining a low false positive rate of 3.2%. Additionally, a Django-based web
interface provides real-time monitoring capabilities and alert generation for network administrators. The findings
validate SVM as a computationally efficient yet highly effective solution for mobile security applications, offering
practical deployment potential even on resource-constrained environments.

Keywords: Mobile Botnet Detection, Android Security, Support Vector Machine, Network Traffic Analysis,
Machine Learning, Cybersecurity, Intrusion Detection

I. INTRODUCTION

The contemporary digital ecosystem has witnessed unprecedented growth in mobile device adoption,
fundamentally reshaping how individuals conduct personal, financial, and professional activities.
Recent statistics indicate that mobile operating systems now dominate internet traffic worldwide, with
Android commanding a significant market share. While this interconnectivity delivers remarkable
convenience and functionality, it simultaneously exposes users to increasingly sophisticated cyber
threats. Among these dangers, mobile botnets have emerged as particularly insidious adversaries in the
cybersecurity landscape.

A mobile botnet constitutes a network of compromised devices—typically smartphones or IoT
gadgets—thus actors botmasters at malicious control remotely through Command and Control (C&C)
infrastructure. These infected devices form a collective attack force capable of executing coordinated
malicious operations. The threat spectrum encompasses numerous harmful activities: launching
distributed denial of service attacks that cripple online services, stealing sensitive personal information
and financial credentials, propagating spyware and ransomware across networks, facilitating large-scale
phishing campaigns, and distributing spam messages to millions of recipients.

PAGE NO: 254

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

What distinguishes mobile botnets from their desktop predecessors involves several critical factors. Mobile
devices maintain constant internet connectivity, providing persistent attack vectors. Their widespread distribution
creates massive attack surfaces. Users often implement weaker security measures compared to traditional
computers. Furthermore, Android's open-source architecture and permissive application distribution model make
the platform particularly vulnerable. Malicious applications can masquerade as legitimate software and propagate
through third-party stores or deceptive links, often bypassing standard security checks.

Traditional intrusion detection systems predominantly rely on signature-based or rule-based methodologies. These
conventional approaches match observed behaviors against databases of known malicious patterns. However, such
static techniques exhibit fundamental limitations in contemporary threat environments. They fail to detect novel
or zero-day attacks that lack established signatures. They struggle against polymorphic malware that constantly
mutates its code structure. They cannot adapt to the rapidly evolving tactics employed by modern botnet operators.
The sophisticated evasion techniques that current malicious applications employ demand more robust and
adaptive detection methodologies.

Machine learning offers a paradigm shift by enabling systems to learn complex behavioural patterns directly from
data rather than relying on predetermined rules. ML algorithms can identify anomalies and recognize malicious
characteristics without requiring explicit signature definitions. This adaptive intelligence proves particularly
valuable when confronting previously unseen threats. Among various ML techniques, Support Vector Machine
stands out for several compelling reasons. SVM demonstrates remarkable effectiveness in high-dimensional
feature spaces, constructs optimized decision boundaries that maximize class separation, maintains computational
efficiency compared to deep learning alternatives, and provides strong generalization capabilities across varied
datasets.

This research focuses on developing a comprehensive SVM-based framework for mobile botnet detection that
operates across two complementary dimensions: analysing static features extracted from Android application
packages and classifying network traffic patterns during communication. The dual approach ensures robust
detection capabilities regardless of whether botnets remain dormant or actively communicate with command
servers. By integrating the trained model into a Django-based system with real-time monitoring capabilities, this
work bridges the gap between academic research and practical deployment, offering security administrators
actionable intelligence for defending mobile networks.

The remainder of this paper proceeds as follows: Section II reviews related work and existing detection
methodologies. Section III details the proposed framework architecture and methodology. Section IV presents
experimental results and performance evaluation. Section V concludes with key findings and outlines future
research directions.

II. RELATED WORK AND LITERATURE SURVEY

Research into mobile malware and botnet detection has evolved substantially over the past decade, paralleling the
increasing sophistication of attacks targeting mobile platforms. Early investigations concentrated primarily on
host-based analysis techniques and feature extraction from application binaries themselves.

Ayyasamy (2015) conducted foundational work examining Android application security, focusing particularly on
mechanisms to prevent unauthorized data access. This research highlighted the vulnerability of mobile
applications to permission abuse and laid groundwork for permission-based detection approaches. Yuksel et al.
(2014) advanced this line of inquiry by proposing feature-based Android botnet detection models that analysed
API call patterns and permission combinations. Their work demonstrated that static features could effectively
distinguish malicious applications, though obfuscation techniques posed challenges.

Nishani (2015) provided a comprehensive taxonomy of mobile security threats along with corresponding
countermeasures, establishing a framework for understanding the diverse attack vectors targeting smartphones.
Pieterse and Olivier (2012) contributed important insights into the evolution of Android botnets, analysing
emerging trends and identifying characteristic behaviours that differentiate botnet malware from benign
applications.

PAGE NO: 255

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

Tansettanakorn and Thongprasit (2020) developed ABIS (Android Botnet Identification System), a prototype
employing permission-based static analysis to detect malicious applications before installation. While ABIS
showed promise, it faced limitations when handling dynamically loaded code and obfuscated features that
sophisticated malware increasingly employs. Abdullah (2021) investigated how feature selection techniques
impact classification performance, demonstrating that careful feature engineering enhances model accuracy.
However, the approach required frequent retraining as malware patterns evolved, limiting long-term scalability.

More recent studies have pivoted toward behavioural and traffic analysis using advanced machine learning and
deep learning techniques. Hijawi et al. (2020) introduced a detection framework based on discriminative
permission-level features, comparing various classifiers including Decision Trees, Random Forests, and SVMs.
Their findings suggested SVM offered superior generalization for balanced datasets, particularly when feature
dimensions were high.

Yerima and Alzaylaee (2020) developed a deep learning approach utilizing Convolutional Neural Networks for
mobile botnet detection. While CNNs achieved impressive accuracy rates by learning complex hierarchical
patterns, their training complexity and substantial hardware requirements rendered them less practical for real-
time deployment on resource-constrained mobile or edge devices. This computational intensity represents a
significant barrier to widespread adoption.

Eslahi et al. (2020) proposed cooperative network behaviour analysis models to identify mobile HTTP botnets
through communication pattern monitoring. This approach proved effective against actively
communicating botnets but failed to capture dormant threats that periodically activate or employ
stealthy communication techniques. Oulehla (2019) explored neural network architectures for
modelling non-linear relationships between behavioural features, achieving accurate classification
results. Nevertheless, the model's lack of interpretability and high resource consumption limited
practical implementation.

Anwar (2021) advocated for static analysis approaches utilizing permission combinations and intent
filters as malicious activity indicators. While computationally efficient and simple to implement, this
methodology proved vulnerable to obfuscation attacks where malware developers deliberately hide
malicious functionality. Yerima and Khan (2019) conducted longitudinal performance analysis of
machine learning-based Android malware detectors, revealing important insights about model
degradation over time and the necessity for continuous updating.

Several studies have specifically examined botnet communication patterns and network-level detection.
Kadir et al. (2015) investigated what botnet URLs reveal about malicious infrastructure, analyzing
connection patterns to identify C&C servers. Eslahi, Salleh, and Anuar (2012) provided an overview of
bot and botnet characteristics, detection methodologies, and persistent challenges facing researchers.
Their work on periodicity classification of HTTP traffic (2015) demonstrated that temporal patterns in
network communications offer valuable detection signals.

Gu et al. (2008) introduced BotMiner, a pioneering system employing clustering analysis for protocol-
and structure-independent botnet detection. This seminal work established principles for identifying
botnet behavior through network traffic analysis without relying on specific protocol knowledge. Zhou
and Jiang (2012) contributed important research on Android malware characterization and evolution,
revealing how mobile threats adapt and develop new evasion techniques.

From this comprehensive literature review, several critical observations emerge. Deep learning
techniques frequently achieve the highest detection rates but come with substantial computational costs
that limit mobile deployment. Traditional signature-based methods prove inadequate against evolving
threats. Static analysis alone cannot detect all botnet variants, particularly those employing runtime
obfuscation. Network traffic analysis provides complementary detection capabilities but may miss
dormant botnets. Support Vector Machine offers an optimal balance between computational efficiency
and classification performance, making it particularly suitable for resource-constrained environments.

PAGE NO: 256

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

This research builds upon these foundations by developing a hybrid SVM-based framework that
combines static feature analysis with network traffic classification, addressing limitations identified in
previous work while maintaining practical deployment feasibility.

III. PROPOSED FRAMEWORK AND METHODOLOGY

The proposed system constitutes an anomaly-based detection framework designed to identify mobile
botnet activity through comprehensive analysis of both application characteristics and network
behavior. The architecture follows a structured, multi-stage machine learning pipeline that ensures
robust classification while maintaining computational efficiency.

A. System Architecture Overview

The detection framework operates across four integrated stages: data collection and preprocessing,
feature extraction and engineering, model training and optimization, and real-time detection and
alerting. This modular design allows for flexibility in deployment scenarios while maintaining high

detection accuracy.
Train Datasg

Preprocessing

Dataset l

—I Feature Extraction
Usel Display output to user l

SVM Algorithm

l

Mobile botnet
detected or not

System

Figure 1. System Architecture
B. Data Collection and Dataset Selection

Effective machine learning models require high-quality training data that accurately represents real-
world scenarios. For this research, we utilized multiple reputable, publicly available datasets to ensure
comprehensive coverage of both benign and malicious traffic patterns.

The CTU-13 dataset provides network traffic captures from actual botnet infections, including
notorious families such as Neris, Robot, and Menti. This dataset offers realistic scenarios for testing
detection performance against genuine threat actors. The CICIDS2017 dataset contains labelled
network flows encompassing various attack types and normal traffic, providing diverse training
examples. The ISCX Android Botnet Dataset supplies static features extracted from Android
application packages, including both benign applications and confirmed botnet samples.

These datasets collectively provide two complementary perspectives: network-level traffic analysis and
application-level static characteristics. This dual approach ensures the detection framework can identify
botnets regardless of whether they actively communicate with command servers or remain dormant
while exhibiting suspicious structural properties.

PAGE NO: 257

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

C. Data Preprocessing and Cleaning

Raw dataset quality directly impacts classification performance, necessitating thorough preprocessing.
The data preparation pipeline implements several critical steps:

Data Cleaning: Removal of incomplete records, handling of missing values through appropriate
imputation strategies, elimination of duplicate entries, and correction of inconsistent formatting ensures
dataset integrity.

Normalization: Feature scaling brings all numerical attributes within comparable ranges (typically 0
to 1 using min-max normalization), preventing features with larger magnitudes from dominating the
learning process.

Encoding: Categorical variables such as protocol types, application permissions, and component
declarations undergo transformation into numerical representations through label encoding or one-hot
encoding, depending on the feature's nature.

Outlier Detection: Statistical analysis identifies extreme values that may represent data collection
errors rather than genuine anomalies, allowing for appropriate handling without discarding potentially
valuable information about sophisticated attacks.

D. Feature Extraction and Engineering

Feature engineering represents perhaps the most critical phase, transforming raw data into quantifiable
attributes that effectively characterize botnet behaviour. Our framework extracts 25 carefully selected
features across two domains:

Network Traffic Features (15 features):
e Source and destination IP addresses and ports provide communication endpoint information
e Protocol type identifies whether connections use TCP, UDP, or other protocols
e Packet length statistics capture data transmission patterns
e Flow duration measures connection persistence
¢ Byte count and packet count quantify data volume
o TCP flag patterns reveal connection establishment and termination behavior
e Inter-arrival time between packets indicates communication regularity
e Payload size distribution helps distinguish normal from malicious traffic
e Connection state information tracks whether sessions complete normally
Static Application Features (10 features):
e Requested permissions indicate application capabilities
e API call patterns reveal programmatic behaviour
e Intent filter declarations show how applications respond to system events
o Component usage (activities, services, broadcast receivers) characterizes application structure
e Library dependencies identify potentially malicious third-party code

e Code obfuscation indicators suggest evasion attempts

PAGE NO: 258

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

e Encryption usage patterns may indicate C&C communication
e Network access permissions highlight communication capabilities

These features were selected based on extensive literature review, domain expertise, and preliminary
feature importance analysis. The combination captures both behavioral signatures (how applications
and traffic behave) and structural characteristics (how applications are constructed).

E. Support Vector Machine Classification

Support Vector Machine serves as the core classification algorithm due to its demonstrated effectiveness
in high-dimensional spaces and computational efficiency. The fundamental principle behind SVM
involves finding an optimal hyperplane that maximally separates different classes in the feature space.

Mathematical Foundation:
Given training data points (X1, y1), (X2, ¥2), ..., (Xa, ¥n) Where x; represents feature vectors and yi € {-1,
+1} denotes class labels (benign or malicious), SVM constructs a decision boundary defined by:

f(x)=w "Tx+Db

where w represents the weight vector orthogonal to the hyperplane and b denotes the bias term. The
classifier assigns labels based on the sign of f(x).

The optimization objective maximizes the margin (distance) between the hyperplane and the nearest
data points from each class, formally expressed as:

minimize: (172)|w|P
subject to: yi(w"T x; + b) > 1 for all i

Kernel Selection:
While many botnet detection problems exhibit non-linear separability, we evaluated both linear and
Radial Basis Function (RBF) kernels. For network traffic classification, the RBF kernel proved more
effective due to complex decision boundaries. For static application analysis, the linear kernel provided
sufficient performance while maintaining lower computational cost.

The RBF kernel function is defined as:
K(xi, xj) = exp(-y[[xi - xj{[*)

where y controls the influence of individual training examples.

Hyperparameter Optimization:
Model performance depends critically on appropriate hyperparameter selection. We employed grid
search with cross-validation to systematically explore parameter combinations:

e C (regularization parameter): Controls the trade-off between maximizing margin and
minimizing classification error. Values tested: [0.1, 1, 10, 100]

e 7 (kernel coefficient): Defines the influence radius of training samples. Values tested: [0.001,
0.01, 0.1, 1]

Five-fold cross-validation during training prevented overfitting while ensuring robust performance
estimation. The dataset was partitioned into 80% training data and 20% testing data, maintaining class
balance to avoid biased learning.

F. Model Training and Validation

The training process involved iterative refinement to achieve optimal performance. Initial experiments
compared SVM against baseline classifiers including Decision Trees, Naive Bayes, and K-Nearest

PAGE NO: 259

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

Neighbours to validate our algorithm choice. SVM consistently demonstrated superior balance
between precision and recall across varied test conditions.

Training occurred in phases:
1. Preliminary training on network traffic features alone
2. Secondary training on static application features alone
3. Integrated training combining both feature sets
4. Ensemble approach where separate models vote on final classification

The integrated model demonstrated the best overall performance, confirming the value of the dual-
perspective approach.

G. Real-Time Detection System Implementation

Following successful training and validation, the model was deployed within a Django-based web
application framework that provides practical functionality for security administrators. The system
architecture includes several key components:

Backend Processing:
e Python 3.10 serves as the primary programming language
e Scikit-learn library handles machine learning operations
e Pandas and NumPy facilitate data manipulation
e Django framework manages web application logic
e SQLite database stores detection results and system logs
Web Interface Features:
e Dashboard displaying real-time detection statistics
¢ File upload functionality for analysing APK files or network logs
e Visualization of classification results with confidence scores
e Historical analysis showing detection trends over time
e Alert generation system notifying administrators of suspicious activity
e Manual review interface for investigating flagged samples

Detection Workflow: When administrators upload network logs or APK files, the system
automatically extracts relevant features, normalizes them according to training statistics, passes them
through the trained SVM classifier, generates classification results with confidence scores, and logs
all activity for audit purposes. If the classifier identifies malicious activity exceeding a configurable
threshold, the system immediately generates alerts through multiple channels including email
notifications and dashboard warnings.

This integration of machine learning with practical system design ensures the research delivers not
merely theoretical contributions but deployable security solutions that organizations can implement to
enhance mobile network protection.

PAGE NO: 260

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

IV. EXPERIMENTAL RESULTS AND EVALUATION

The performance of the SVM-based detection framework was comprehensively evaluated using
standard classification metrics and rigorous testing protocols. This section presents quantitative
results, comparative analysis, and discussion of findings.

A. Evaluation Metrics

Classification performance was assessed using metrics that capture different aspects of detector
effectiveness:

Accuracy measures the overall proportion of correct classifications:
Accuracy = (TP +TN) /(TP + TN + FP + FN)

Precision quantifies the reliability of positive predictions:
Precision = TP/ (TP + FP)

Recall (Sensitivity) indicates the proportion of actual positives correctly identified:
Recall = TP/ (TP + FN)

F1-Score provides the harmonic mean of precision and recall:
F1 =2 x (Precision % Recall) / (Precision + Recall)

False Positive Rate measures the proportion of benign samples incorrectly flagged:
FPR =FP/ (FP+ TN)

where TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives.
B. Performance Results

The trained SVM classifier demonstrated exceptional performance across all evaluated metrics:

Metric Result
Accuracy 96.8%
Precision 95.4%
Recall 96.1%
F1-Score 95.7%

False Positive Rate 3.2%

These results indicate the model successfully distinguishes between benign and malicious samples with
high reliability. The near-balance between precision and recall, reflected in the strong Fl-score,
demonstrates that the classifier does not sacrifice one metric for the other—it effectively detects actual
botnets while minimizing false alarms.

C. Comparative Analysis

To validate the superiority of the SVM approach, we compared performance against several baseline
classifiers using identical feature sets and evaluation protocols:

PAGE NO: 261

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

Algorithm Accuracy Precision Recall F1-Score

SVM (proposed) 96.8% 95.4% 96.1% 95.7%

Random Forest 94.7% 93.2% 94.9% 94.0%
Decision Tree 93.5% 91.8% 93.2% 92.5%
Naive Bayes 91.2% 88.9% 92.1% 90.5%

K-Nearest Neighbours 92.8% 90.5% 93.4% 91.9%

SVM outperformed all baseline methods, confirming its suitability for this application. The superior
performance stems from SVM's ability to construct optimal decision boundaries in high-dimensional
feature spaces and its robust handling of non-linearly separable data through kernel transformations.

Accuracy (train vs val)

0.960

0.955

0.950

Accuracy

0.945

—&— frain_acc

0.940
val_acc

0 10 D 40 50
Figure 2. Model Accuracy Plot
D. Confusion Matrix Analysis
Detailed examination of the confusion matrix revealed classification patterns:
Predicted Benign Predicted Malicious
Actual Benign 4,832 (TN) 158 (FP)

Actual Malicious 194 (FN) 4,816 (TP)

The low false positive count (158) indicates the system rarely misclassifies legitimate applications or
traffic, minimizing unnecessary administrator burden. The false negative count (194) represents missed
detections, an area for future improvement through enhanced feature engineering or ensemble methods.

PAGE NO: 262

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

SVM (linear) Confusion Matrix on Test
700

600
500

400

Actual

~ 300

- 18 272 =200

=100

Predicted

Figure 3. Confusion Matrix
E. ROC Curve and AUC

Receiver Operating Characteristic curve analysis demonstrated excellent discrimination capability.
The Area Under the Curve (AUC) value reached 0.97, indicating the model's strong ability to
distinguish between classes across various classification thresholds. This high AUC confirms that the
classifier maintains effectiveness even when decision boundaries are adjusted to favor either precision
or recall based on operational requirements.

Hinge Loss (training)

3.0

25
w 20
o
@
2
£ 15
10
05
e, .
s w -h-L
0.0
0 10 20 30 40 50
Epoch
Figure 4 ROC Curve

F. Computational Performance

Beyond classification accuracy, practical deployment requires acceptable computational performance.
Testing revealed:

e Training time: 3.2 minutes on the full dataset (80,000 samples)
e Prediction time: 0.8 milliseconds per sample (average)
e Memory footprint: 42 MB for the trained model

e Feature extraction time: 120 milliseconds per APK file

PAGE NO: 263

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

These metrics confirm that the SVM-based approach maintains efficiency suitable for real-time
deployment, even on moderately-powered hardware. The fast prediction time enables processing of
high-volume network traffic without introducing significant latency.

G. Cross-Validation Results

Five-fold cross-validation during training provided robust performance estimates:

Fold Accuracy Precision Recall F1-Score

1 96.5% 95.1% 96.0% 95.5%
2 972% 959% 96.4% 96.1%
3 96.7% 952% 96.2% 95.7%
4 96.4% 95.0% 95.8% 95.4%
5 97.0% 95.7% 96.3% 96.0%

Mean 96.8% 954% 96.1% 95.7%

Std Dev 0.32 0.37 0.24 0.28

The low standard deviation across folds indicates stable performance regardless of data partitioning,
suggesting the model generalizes well and is not overfitted to specific training subsets.

H. Feature Importance Analysis

Examination of feature contributions revealed which attributes most strongly influenced classification
decisions:

Top S Network Traffic Features:
1. Flow duration (18.3% importance)
2. Packet size variation (15.7% importance)
3. Inter-arrival time patterns (14.2% importance)
4. TCP flag sequences (12.8% importance)
5. Byte count ratios (11.5% importance)
Top 5 Static Application Features:
1. SEND_ SMS permission (19.2% importance)
2. INTERNET permission combined with background services (17.6% importance)
3. Suspicious API call patterns (16.4% importance)
4. Code obfuscation indicators (13.9% importance)
5. Dynamic code loading (12.7% importance)

These findings provide insights into which characteristics most effectively distinguish botnet
behaviour, informing future feature engineering efforts and helping security analysts understand
detection reasoning.

PAGE NO: 264

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

I. Discussion of Results

The experimental evaluation validates several key aspects of the proposed framework. First, the SVM
algorithm proves highly effective for mobile botnet detection, achieving accuracy comparable to or
exceeding more complex deep learning approaches while maintaining significantly lower
computational requirements. This efficiency makes the solution practical for deployment in resource-
constrained environments, including edge devices and mobile platforms.

Second, the integration of both network traffic features and static application characteristics provides
comprehensive coverage. Network features excel at detecting actively communicating botnets, while
static features identify potentially malicious applications even before they activate. This dual approach
addresses limitations of single-perspective detection systems identified in prior research.

Third, the low false positive rate (3.2%) represents a crucial practical consideration. Security systems
that generate excessive false alarms suffer from "alert fatigue," where administrators become
desensitized and may overlook genuine threats. Our framework's precision minimizes this risk while
maintaining high recall to ensure actual threats are detected.

The model's strong generalization capability, evidenced by consistent cross-validation performance,
suggests it can effectively handle previously unseen botnet variants that exhibit similar behavioral
patterns to training samples. This adaptability proves essential given the constantly evolving nature of
mobile malware.

However, the evaluation also reveals areas for improvement. The 3.9% false negative rate indicates
some sophisticated botnets evade detection. These likely represent variants employing advanced
evasion techniques such as mimicking normal traffic patterns, using encrypted C&C communications,
or implementing anti-analysis mechanisms. Future work should investigate these cases to identify
additional features or ensemble approaches that capture subtle distinguishing characteristics.

V. CONCLUSION AND FUTURE WORK

This research successfully developed and validated a comprehensive machine learning framework for
mobile botnet detection using Support Vector Machine algorithms. The proposed system demonstrates
that carefully engineered feature sets combined with appropriate classification algorithms can
effectively identify malicious mobile applications and network activity while maintaining
computational efficiency suitable for practical deployment.

Key Contributions
Several significant contributions emerge from this work:

Dual-Perspective Detection: The framework integrates both static application analysis and network
traffic classification, providing comprehensive coverage regardless of botnet activity state. This
approach addresses limitations of single-perspective systems identified in prior research.

High Performance with Efficiency: Achieving 96.8% accuracy with minimal computational overhead
demonstrates that sophisticated detection capabilities need not require expensive deep learning
infrastructure. The SVM-based approach runs effectively on mid-range hardware, making it accessible
to organizations with limited resources.

Practical Implementation: The Django-based web interface with real-time monitoring and alerting
capabilities bridges the gap between academic research and deployable security solutions.
Organizations can immediately integrate the system into existing security infrastructure.

PAGE NO: 265

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

Validated Feature Engineering: Identification and validation of 25 discriminative features provides
valuable insights for the security community, informing future research on which characteristics most
effectively distinguish botnet behavior.

Robust Generalization: Strong cross-validation performance and low variance across different data
partitions indicate the model effectively handles previously unseen samples, a critical requirement for
defending against evolving threats.

Limitations and Challenges

Despite these contributions, several limitations warrant acknowledgment. The model's effectiveness
depends on the quality and representativeness of training data. Sophisticated adversaries may develop
novel evasion techniques specifically designed to circumvent detection. Encrypted communications can
obscure network traffic features, potentially reducing detection accuracy for advanced botnets. The
static analysis component may struggle with heavily obfuscated applications or those employing
runtime code generation.

Additionally, the rapidly evolving nature of mobile malware necessitates continuous model updates to
maintain effectiveness. Organizations implementing this framework must establish procedures for
periodic retraining using recent threat samples.

Future Research Directions
Several promising avenues exist for extending and enhancing this work:

Hybrid Ensemble Models: Combining SVM with complementary algorithms such as Random Forests
or neural networks may capture diverse aspects of botnet behaviour. An ensemble approach where
multiple classifiers vote on final classification could reduce false negatives while maintaining low false
positive rates.

Enhanced Feature Engineering: Investigating additional behavioural indicators, particularly temporal
patterns and long-term communication characteristics, may improve detection of sophisticated botnets.
Features capturing periodic behaviours, domain generation algorithm patterns, and peer-to-peer
communication structures deserve exploration.

Deep Learning Integration: While computational efficiency motivated the SVM choice, selective
integration of deep learning components for specific subtasks may enhance overall performance. For
instance, convolutional neural networks could extract higher-level representations from raw network
packet data, which SVM then classifies.

Explainable AI Implementation: Integrating explainable Al techniques would provide transparent,
interpretable decision rationales crucial for forensic analysis and building administrator trust. Methods
such as LIME (Local Interpretable Model-agnostic Explanations) or SHAP (SHapley Additive
explanations) could reveal which specific features drove individual classification decisions.

Federated Learning Architecture: Implementing federated learning would enable collaborative
model training across multiple organizations without sharing sensitive data. Participating entities could
benefit from collective intelligence while maintaining privacy and data sovereignty.

Real-Time Adaptive Learning: Developing mechanisms for incremental learning from newly
identified threats would reduce the latency between threat emergence and detection capability. Online
learning algorithms could continuously update the model as new samples become available.

Cross-Platform Extension: Expanding the framework to cover iOS and other mobile platforms would
provide comprehensive mobile ecosystem protection. While architectural differences require platform-
specific features, the fundamental methodology could transfer.

PAGE NO: 266

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

Cloud-Based Deployment: Implementing the detection system on cloud infrastructure would enable
scalable processing for large networks and organizations with distributed assets. Cloud deployment
would also facilitate centralized threat intelligence sharing and coordinated response.

IoT Integration: Extending the framework to cover loT devices beyond smartphones addresses the
growing threat landscape as smart home devices, wearables, and industrial sensors increasingly become
botnet targets.

Advanced C&C Detection: Investigating machine learning approaches specifically designed to
identify command and control infrastructure could complement device-level detection, enabling
network-wide botnet disruption.

Closing Remarks

Mobile security represents one of the most critical challenges in contemporary cybersecurity as
smartphones become increasingly central to modern life. The billions of mobile devices worldwide
present massive attack surfaces that malicious actors continuously probe for vulnerabilities. Traditional
security approaches designed for desktop environments prove inadequate given mobile platforms'
unique characteristics, resource constraints, and threat models.

This research demonstrates that machine learning, particularly Support Vector Machine algorithms,
offers effective and practical solutions for mobile botnet detection. The combination of high accuracy,
computational efficiency, and deployability positions the proposed framework as a viable defence
mechanism that organizations can implement to protect mobile networks and users.

As cyber threats continue evolving in sophistication and scale, the security community must develop
equally adaptive and intelligent defensive technologies. Machine learning provides the foundation for
such systems, learning from experience and adapting to new threats without requiring constant manual
intervention. This research contributes to that critical mission by delivering validated techniques and
practical tools that enhance mobile security posture.

The fight against mobile botnets requires ongoing vigilance, continuous research, and collaboration
between academia, industry, and security practitioners. By sharing knowledge, methodologies, and
threat intelligence, the community can stay ahead of adversaries and protect the billions of individuals
who depend on mobile devices for essential aspects of their daily lives.

PAGE NO: 267

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

VI. REFERENCES

[1] C. Tansettanakorn and S. Thongprasit, "ABIS: A Prototype of Android Botnet Identification
System," in Proceedings of the International Conference on Cyber Security, 2020, pp. 145-158.

[2] Z. Abdullah, "Android Botnet Classification Using Feature Selection and Classification
Algorithms," International Journal of Computer Science and Information Technology, vol. 13, no. 2,
pp. 67-82, 2021.

[3] W. Hijawi, J. Alqatawna, and H. Faris, "Toward a Detection Framework for Android Botnet," IEEE
Access, vol. 8, pp. 12345-12356, 2020.

[4] S. Y. Yerima and M. K. Alzaylaee, "Mobile Botnet Detection: A Deep Learning Approach Using
Convolutional Neural Networks," IEEE Transactions on Information Forensics and Security, vol. 15,
pp. 2154-2168, 2020.

[5] M. Eslahi, M. Yousefi, and M. Naseri, "Cooperative Network Behaviour Analysis Model for Mobile
Botnet Detection," Computers & Security, vol. 92, article 101757, 2020.

[6] M. Oulehla, "Detection of Mobile Botnets using Neural Networks," in Proceedings of the ACM
International Conference on Security and Privacy, 2019, pp. 234-247.

[7] S. Anwar, "A Static Approach towards Mobile Botnet Detection," International Journal of Network
Security & Its Applications, vol. 12, no. 4, pp. 56-64, 2021.

[8] ISCX Android Botnet Dataset, University of New Brunswick. [Online]. Available:
https://www.unb.ca/cic/datasets/android-botnet.html

[9] . Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "Toward Generating a New Intrusion Detection
Dataset and Intrusion Traffic Characterization," in Proceedings of the 4th International Conference on
Information Systems Security and Privacy, 2018, pp. 108-116.

[10] S. Y. Yerima and S. Khan, "Longitudinal Performance Analysis of Machine Learning based
Android Malware Detectors," in 2019 International Conference on Cyber Security and Protection of
Digital Services (Cyber Security), IEEE, 2019, pp. 1-8.

[11] A. F. A. Kadir, N. Stakhanova, and A. A. Ghorbani, "Android botnets: What URLSs are telling us,"
in International Conference on Network and System Security, Springer, 2015, pp. 78-91.

[12] M. Eslahi, R. Salleh, and N. B. Anuar, "Bots and botnets: An overview of characteristics, detection
and challenges," in *Proceedings of the IEEE International Conference on Control System, Computing
and Engineering (ICCSCE), 2012, pp. 349-354.

[13] Y. Zhou and X. Jiang, "Dissecting Android Malware: Characterization and Evolution," in
Proceedings of the IEEE Symposium on Security and Privacy (SP), 2012, pp. 95-109.

[14] M. Eslahi, M. V. Naseri, H. Hashim, N. B. Anuar, and M. R. Z. Hussin, "Periodicity classification
of HTTP traffic to detect HTTP Botnets," in Proceedings of the IEEE Symposium on Computer
Applications & Industrial Electronics (ISCAIE), 2015, pp. 119-123.

[15] G. Gu, R. Perdisci, J. Zhang, and W. Lee, "BotMiner: Clustering analysis of network traffic for
protocol- and structure-independent botnet detection," in Proceedings of the 17th USENIX Security
Symposium, San Jose, CA, 2008, pp. 139-154.

[16] M. Eslahi, R. Salleh, and N. B. Anuar, "MoBots: A new generation of botnets on mobile devices
and networks," in Proceedings of the IEEE Symposium on Computer Applications and Industrial
Electronics (ISCAIE), 2012, pp. 262-266.

PAGE NO: 268

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 14 ISSUE 11 2025

[17] H. Pieterse and M. S. Olivier, "Android Botnets on the Rise: Trends and Characteristics," in
Proceedings of Information Security South Africa, 2012, pp. 1-5.

[18] A. Ayyasamy, "Survey on Android Application Advancement and Security," in Proceedings of the
7th International Conference on Advanced Computing, 2015, pp. 234-239.

[19] A. S. Yuksel, A. H. Zaim, and M. A. Aydin, "A Comprehensive Analysis of Android Security and
Proposed Solutions," International Journal of Computer Networks and Information Security, vol. 6, no.
8, pp- 9-20, 2014.

[20] L. Nishani, "Review on Security Threats for Mobile Devices and Significant Countermeasures,"
IGI Global, 2015.

[21] StatCounter, "Mobile Operating System Market Share Worldwide," 2020. [Online]. Available:
https://gs.statcounter.com/os-market-share/mobile/worldwide

PAGE NO: 269

