

H

Performance-Driven High-Level Synthesis: Data-Adaptive

Loop Approximations
Salil Kumar Malla,

 College of Engineering Bhubaneswar

Abstract— In error-tolerant applications, approximate

computing (AC) trades computational precision for performance
or energy advantages. Utilizing operation-level approximations,
AC-aware high-level synthesis tools at the hardware level
produce a quality-reduced register-transfer level design from an
accurate high-level description. Although the primary focus of
present technologies is energy savings, our concentration is on
performance optimizations. Often, loops are the most important
application code structures in terms of performance. In a loop,
iterations might have varying implications on output quality due
to an inherent data-dependency of approximations. We describe
a novel technique that maximizes performance benefits by
clustering iterations based on data statistics and using various
approximations in each cluster. This technique takes advantage
of iteration-wise data fluctuations. Up to 76% more performance
can be achieved, with clustering accounting for up to 21.7% of
that gain.

I. INTRODUCTION

IGH-LEVEL synthesis (HLS) tools are widely used in
designing hardware accelerators for compute-intensive

applications. They automatically generate a register-transfer
level (RTL) design from a high-level description. For inher-
ently error-tolerant applications, recent work [1], [2] incorpo-
rates approximating computing (AC) concepts into HLS by
applying operation-level approximations to tradeoff compu-
tational quality. Existing AC-aware HLS tools target energy
savings. In this letter, we study a novel approach that targets
performance gains.

Loops are often the performance-critical parts of applica-
tions, and as such have been studied extensively in traditional
HLS. Unrolling and pipelining are two widely used optimiza-
tion techniques. A wide range of advanced loop optimizations
have been proposed until recently [3]–[5], but none of them
considers quality as a design metric. The quality impact of
hardware approximations is inherently data-dependent. At the
same time, data statistics can vary across loop iterations.
Existing AC-aware HLS tools fully unroll all loops or treat
all iterations the same. Complete unrolling of loops allows
fine-grain, data-specific optimizations to be applied at the
individual operation level, but breaks the regularity of loop
structures and results in high area and control overheads, espe-
cially for large iteration counts. By contrast, keeping loops
rolled and approximating all iterations in the same way ignores
iteration-wise variations, which is suboptimal.

Fig. 1. Overview of our loop optimization framework.

We propose an approach that enables fine-grain, iteration-
specific optimizations, while keeping overall loop structures
intact. We cluster loop iterations according to their similarity in
data statistics and apply different approximations for each clus-
ter. In doing so, we employ a quality-performance optimization
approach that automatically finds the best iteration clusters and
their approximation levels. Our goal is performance maximiza-
tion under quality constraints, and, without loss of generality,
we utilize operation eliminations as hardware approximation
technique. This approximation removes operations that have
a small impact on output quality by replacing their output
with zero [1], [6]. Eliminated operations can be effectively
exploited during HLS scheduling to reduce clock cycles and
hence increase performance.

II. OVERVIEW

We integrate our loop optimization into the AC-aware HLS
tool from [1], which is built on top of the LLVM-based
LegUp HLS framework [7]. Fig. 1 shows an overview of
our optimization flow with differences from [1] highlighted.
The work in [1] automatically generates approximated RTL
designs from an accurate high-level C description under given
output quality constraints, and an optimization setup that
includes user-specified or automatically identified approxima-
tion points, which are variables in the high-level C description
to apply approximations to. In [1], a profiling step collects
data statistics from simulations of the accurate design and
performs a prescheduling to obtain operation mobilities and
total latency (L). In our case, we also obtain the initiation
interval (II) of all loops specified to be pipelined by the user.
The main extension in our flow is the loop clustering step
inserted after profiling. We use iteration-wise data statistics
at approximation points weighted by their estimated quality
and noise sensitivity to compute a distance metric used for
clustering. A hierarchical clustering algorithm then determines
the optimal mappings of iterations to clusters, for all possible
numbers of clusters from one to the number of iterations. In
the process, we reorder iterations (if possible) to find optimal
clusters and maximize gains.

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 8 ISSUE 1 2019

PAGE NO: 210

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on January 11,2024 at 10:54:30 UTC from IEEE Xplore. Restrictions apply.

i,j

=

×

p,i

∈ { − }−
=

+

∀ ∈ { − }+

i, j,

tiate elements that contribute to a distance. A cosine distance

i j

i, j,
loop is split into C clusters that have different approximations

p∈P Di,p p∈P Dj,p

p=

=

to
×

i ,i 1 ∀ ∈ { − }

i j

Some elements in Di should contribute less to clustering
due to their small impact on output quality. For example,
an approximation at a multiplier input causes a larger noise
than the same approximation at a multiplier output. Therefore,
when we cluster iterations, iteration-wise differences in mul-
tiplier outputs should be weighted down. This quality impact
is a function of the DFG and data statistics. For each approx-
imation point p, we analytically estimate its impact as the
output noise δp resulting from a truncation of 1 least sig-
nificant bit using the method in [8]. We then use the δp
normalized against the maximum δmax to compute a weighted

Fig. 2. Iteration clustering and optimization. D
r

= (D
r

, . . . , D
r

), D
r

= Dp,i · δp/δmax.
i Clustering results are given to the final optimization and 0,i P−1,i p,i D may have larger varia-
In addition, some elements in i

code generation steps. The optimization finds a solution that
maximizes approximation benefits. We build on the solver
from [1], which uses an efficient heuristic search coupled
with semi-analytical quality and energy models to find quality-
energy optimized designs. We replace the energy model with

tions across iterations but a smaller average value than others.
Due to the relative nature of noise, such elements should be
counted more in determining clusters. To apply such effects,
we use dispersion indices φp σ 2/μp computed as the ratio of variance 2

a performance model and iteratively run the solver to find the {D D σp and mean μp of iteration-wise signal powers
best number of clusters and their approximations that max- p,0, p ,1,..., Dp,I−1} at approximation point p. We nor-

malize φp against their maximum φmax to compute a scaled
imize performance gains. With the optimization results, we

D
rr

= (D
rr , . . . , D

rr
), D

rr
 = D

r
· φp/φmax.

modify the rolled dataflow graph (DFG) and execute HLS i 0,i P−1,i p,i p,i
rr

scheduling and binding to generate the Verilog RTL code.

III. SELECTIVE LOOP OPTIMIZATION

Fig. 2 illustrates our loop optimization concept. Let the
accurate high-level description of the input design contains

The P I multidimensional vector D becomes the input
clustering. We apply two commonly used distance met-
rics: Euclidean and cosine distances. The Euclidean dis-

tance between iteration i and j is calculated as MEU

,.
p∈P (D

rr p − Drr p)2. This is simple, but does not differen-

mapped to V initial decision variables (P V). Note that deci-
sion variables are defined only within the loop body and are

CS
i,j is instead known to give better results in multidimen-

not indexed by loop iterations. We use profiled signal powers sional clustering

Dp,i of approximation points p ∈ {0, ... , P − 1} in iterations
CS

D

rr
· D

rr

.
p∈P D

rr

p × D
rr

p

i ∈ {0, ..., I − 1} for clustering. After the optimization, the

i,j = 1 −
|D

rr
||D

rr
|

= 1 − ,.

rr2
,.

. (1)
rr2

and iteration counts, s.t. the average quality across all iterations
meets constraints and the total sum of iteration counts is I.

A. Profiling

Using the given testbench, we run a c simulation of the

We build an I I matrix M out of elements Mi,j representing
the distances of iterations i and j. M is symmetric with zero
diagonal elements.

2) Iteration Reordering and Clustering: In many cases,
data statistics Di are not aligned with iteration sequences, mak-

unrolled design to obtain statistical information Dp,i = μ2 + ing clustering along existing boundaries nonoptimal. Better
2
p,i of the application data at each approximation point p in

2
clusters can be found if we reorder iterations according to
Mi,j. Reordering is applicable for loops that do not have loop-

each iteration i, where μp,i is the mean and σp,i the variance.

Profiled statistics are used for clustering and quality estimation,
i.e., final synthesis results depend on inputs used in profiling.

We also run the scheduler from [7] on the rolled loops in the
input design to extract the accurate loop body’s latency (Lac)
and, if pipelined, initiation interval (IIac). We also obtain the
scheduling table MAPsch, where MAPsch(t) returns the set of
operations scheduled in clock cycle t.

Finally, we build a mapping table MAPas of all operations
in the loop body that can be jointly eliminated. For example, if
an addition is eliminated, i.e., approximated to zero, all of its
predecessor operations become unnecessary and can also be
eliminated. In addition, any adder successors can be bypassed,
and multiplier successors can be eliminated. MAPas is used
for performance estimation during our optimization step.

B. Loop Clustering

Using the profiling and scheduling information, we perform
loop clustering according to iteration-wise data statistics.

1) Distance Metric: We cluster iterations using a dis-
tance metric computed from the P-dimensional vectors Di
(D0 , i,..., DP 1,i), i 0 , . . . , I 1 . We first scale data
statistics Di to account for their quality and noise sensitivity.

carried dependencies. Even if there exists a dependency, loops
that successively compute a sum of all iteration outputs, such
as filters, can be reordered.

Our reordering algorithm first finds an initial iteration pair
(i and j) that has a minimum distance. This pair becomes the
seed for reordering. We then find the iteration that is closest to
i or j, and append this iteration before i or after j to become the
new first or last iteration, respectively. We successively append
iterations until there is none remaining. The result is a mapping

table MAPro(ir) that returns the original iteration index i for
each reordered iteration ir. We also collect distances between

adjacent reordered iterations, M
r

r r , ir 0 , . . . , I 2 . We
pass this information to clustering. If reordering is not applied,
we directly pass the original iteration indices and adjacent
distances Mi,i 1, i 0 , . . . , I 2 to clustering.

K-means and hierarchical clustering are widely used clus-
tering algorithms. We adopt hierarchical clustering since it
provides results for different numbers of clusters and does
not have a random behavior in its initial seed selection.
Hierarchical clustering is performed using the mappings and
distances from reordering. It iteratively merges adjacent iter-
ations that have minimum distance into clusters. We run
hierarchical clustering starting from I down to 1 cluster, and

M

a loop with I iterations and P approximation points that are

M

σ

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 8 ISSUE 1 2019

PAGE NO: 211

becomes L = L − L .c

=
=

c

= { }

×

=

eff

op,c

mem mul

=

∈ ×
=

+ + +

op op mem

c∈C c × (Ic − 1) + Lc. Here, c is the iteration count
using all optimizations (C + D

rr
+ RO). Euclidean distance

= =

record the intermediate results for all possible cluster counts
C 1, 2 , . . . , I . For each C, the result is a mapping table
MAPC of iterations to clusters. MAPC(c) returns the set of

iteration indices in the cth of C clusters (0 ≤ c < C).

C. Quality-Performance Optimization

Our optimization problem is to find the best number of
clusters and their approximations that maximize performance
benefits under quality constraints. Our decision variables sp,c
are binary, where sp,c 1 iff the operation at approximation
point p in cluster c is eliminated, and sp,c 0 otherwise.
We propose a heuristic that iteratively increments the num-
ber of clusters and finds approximations for all clusters until
no more performance gain is achieved. Our heuristic reuses
the optimization solver from [1]. For a given clustering and
corresponding decision variables, the solver in [1] can find
near-optimal approximations with a dramatically reduced com-
plexity using analytical quality and energy models. We replace
the energy model in [1] with a performance model. For quality
estimation, we use the analytical quality model from [1].

1) Performance Model: Processing time is the product of
the number of clock cycles T and the maximum critical path
delay across all cycles. The latter can be reduced by other
types of approximations, such as precision scaling, but only
when the approximation is applied in the most critical cycles
across the entire design, which limits benefits. Therefore, in
this letter, we only consider operation eliminations targeting
reductions of T for performance improvement.

T is determined from the II and L of each cluster. We esti-
mate IIc and Lc of cluster c using MAPsch and MAPas of
the accurate design obtained during profiling. When approx-
imating operation p in cluster c, it can open a set of other
operation eliminations. By excluding operations in MAPas(p)
for all eliminated p in cluster c from MAPsch, we determine
the number of clock cycles that do not have any operations
scheduled after approximations, which results in an estimated
latency reduction of Lred. The new latency of the cluster thus

red
c

If pipelining is applied, the II of each cluster is esti-
mated by similarly checking how many memory accesses

TABLE I

EXAMPLE SETUP

are identified in the accurate, unclustered loop body. For a C
larger than 1, each cluster has its own V decision variables,
and the V original decision variables are expanded into V C
new decision variables according to MAPC.

The solver from [1] uses a breadth-first search to succes-
sively evaluate different approximation solutions. For each
solution, we modify the solver to first find its effective number
of clusters, Ceff. Ceff is the number of clusters that truly have
different approximations. For example, if two among C 3
clusters have the same approximations, there is no need to
leave the three clusters separated. Instead, we merge the two
clusters into one, and Ceff becomes 2. We then let the solver
estimate the quality and performance for the effective clusters
and their approximations.

The solver returns the evaluated solution that has the small-
est T. We stop increasing C if T does not improve any more.

The last solution consisting of the best Copt and corresponding
approximations is returned as the final optimization result.

D. Synthesis

With the final solution from the optimization, we synthe-
size approximated Verilog RTL code. We first modify the
intermediate representation (IR) of the accurate design to cre-
ate multiple serial copies of a loop. Each effective cluster’s
approximation level and the number of iterations in each
cluster is then used to adjust the code for each loop. After
modifying the IR, we run standard scheduling and binding in
HLS. When generating an RTL code, MAPro is applied for
iteration reordering as an address lookup table.

IV. RESULTS

We present experimental results for three examples from [1].
Table I summarizes our setup. All examples are constrained
by their output signal-to-noise ratio (SNR). In all cases, all

(Nred) and arithmetic operations (Nred and Nred) using shared
mem add mul external inputs and internal multiplier outputs were manu-

resources can be eliminated by approximations. For clus-
ter c, the remaining numbers of operations are computed as

Nop,c = Nop,ac − Nred , where op ∈ {mem, add, mul} is the

ally selected as approximation points. conv2d is not pipelined,
while all other examples are. For all experiments, we allowed
the tool to explore up to 5 clusters (CMAX = 5). For the per-

operation type. Here, Nop,ac are the number of respective
operations in the accurate loop body.

With Nop,c, we follow the initial II determination method
under resource constraints in [7] and estimate a new IIc as

IIc = min(Nop,c/Ncon). Here, Ncon is the constraint on the
number of memory ports, e.g., Ncon = 2 for a dual port mem-

formance model, Ncon 1 and Ncon 4 are assumed. There
is no resource constraint on the number of adders.

Table II summarizes results. For the three examples, we run
our clustering optimization for a relatively low (10 dB), medium
(20 dB), and high (30 dB) SNR, and we compare performance
from our approach to that of an accurate design (Tac). We

ory. Ncon mem also compare our performance against an approximated design

type
op is the resource constraint for arithmetic operation

op ∈ {add, mul}.
without clustering (NC). For each SNR, we apply three opti-
mization levels: 1) clustering with raw data statistics and no

With estimated Lc and IIc, the total number of clock
c.ycles

II
for a pipelined design

I
is estimated as T =

iteration reordering (C); 2) clustering using the modified data

statistics, but no iteration reordering (C + D
rr

); and 3) clustering
of cluster c. The II becomes the main target for reduc-
tions through approximations. Without pipelining, T

c C Lc Ic, and only a reduction in Lc matters.
2) Optimization: Our heuristic iteratively calls the solver

in [1] to obtain an approximation that maximizes a reduction in
T for a given number of clusters C, successively increasing C
starting from C 1, i.e., without clustering, up to CMAX. For
a given C, we first update decision variables to be used in the
solver, using the clustering result MAPC. Before clustering, V
decision variables and their mappings to approximation points

is used as the default metric. We also provide results using

cosine distances for C D
rr

RO Cos.
Gains vary across examples and SNR levels. Maximum

performance improvements of 69% and 76% are observed in
idct at 20 dB and 10 dB SNRs. This corresponds to a PSNR of
32 dB and 22 dB, where the accurate idct has a PSNR of 48 dB.
The maximum gain from clustering is 21.7% in quatmul at the
lowest SNR. The idct has the largest iteration-wise variation in
its input data, but NC baseline gains limit additional clustering

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 8 ISSUE 1 2019

PAGE NO: 212

+ +

eff

eff

Fig. 3. Performance-area design space. (a) conv2d. (b) quatmul. (c) idct.

TABLE II

OPTIMIZATION RESULTS COMPARED TO Tac IN TABLE I

benefits (up to 11.7%). Other examples have smaller iteration-
wise variations, but little to no NC gains, and thus larger
clustering gains. The choice between Euclidean and cosine
distances depends on the application and inputs. In conv2d,
cosine distances provide higher or the same gains than Euclidean
ones for all SNRs. By contrast, Euclidean distances generally
work better in other examples. In general, C D

rr
RO gives

the best results. There is no clustering gain in quatmul at 30 dB
since there is no opportunity for operation eliminations, and
having multiple clusters only introduces overhead.

Even though we evaluate up to five clusters, Copt ends up
being less than four in all cases. For pipelined examples, this
is due to pipelining overhead. Having multiple clusters only
provides benefits if the number of reduced clock cycles due
to II reduction can compensate for the overhead in breaking
the pipelining structure. For the nonpipelined conv2d, Copt is
still limited to 2. This is because the example is simple, having
only one multiplication and addition in its loop body. As such,
there exist only two possible approximation levels for the loop
body, and Ceff can not be larger than 2.

Due to control and resource replication in our HLS tool,
creating multiple clusters increases the hardware area. This
motivates us to compare our proposed approach to existing
loop unrolling techniques, which provide similar area versus
performance tradeoffs. Unrolling can open better scheduling
opportunities while also allowing for approximations at finer
granularity. Note that, clustering is orthogonal and can be
combined with existing loop optimization techniques, such
as unrolling. Fig. 3 shows the quality, area, and performance
design space for conv2d Fig. 3(a), quatmul Fig. 3(b), and idct
Fig. 3(c) examples using either unrolling or clustering with dif-
ferent unroll factors and effective cluster counts, respectively.
The x-axes show area results from Synopsys DesignCompiler,
normalized against the area of the accurate rolled design. The
y-axes show the T of approximated designs normalized against
Tac. For conv2d, due to its simplicity, there are no approxi-
mation opportunities without unrolling and clustering at any
SNR level. Furthermore, unrolling can only be done by factors
of 5, which is the smallest divisor of the loop iteration count.
By contrast, clustering has no such restrictions. At 30 dB in
quatmul and at 20 and 30 dB in idct, due to their effective
pipelining, there are no scheduling benefits from unrolling.

Only when additional approximations are enabled at lower
SNRs, benefits are seen. Overall, as results show, clustering
can either dominate unrolled designs or provide new Pareto
choices. At all SNRs in conv2d, at 20 dB in quatmul, and at
10 and 30 dB in idct, designs with multiple clusters work as
new Pareto-optimal design points next to the partially unrolled
designs. For quatmul at 10 dB and idct at 20 dB, the designs
with 2 clusters even dominate unrolled designs.

Runtime of our tool is dominated by the solver from [1], which
depends on the size of the design space to explore. On an Intel
Core i7 at 2.67 GHz, the average runtime per SNR target with
versus without clustering is 8 s versus 3 s for conv2d, 9 min.
versus 3 min. for quatmul, and 25 min. versus 8 min. for idct.

V. CONCLUSION

We introduced our loop optimization method for quality-

performance-area aware AC-HLS in this letter. We suggested

a method that selectively approximates loop iterations based

on their data-dependent impact on final output quality and

leverages operation eliminations for speed optimization. Our

method automatically determines the ideal number of clusters

and approximations, including loop transformations, using an

efficient optimization heuristic. The findings indicate that

approximations can lead to up to 76% of performance

increases, with finer-grained approximations resulting from

clustering accounting for up to 22% of these gains. As of

right now, we only offer loops that allow for iteration

reordering. We intend to expand our methodology to include

more approximation approaches and dependent and nested

loop structures in the future.

REFERENCES

[1] S. Lee, L. K. John, and A. Gerstlauer, “High-level synthesis of approxi-
mate hardware under joint precision and voltage scaling,” in Proc. DATE,
Lausanne, Switzerland, Mar. 2017, pp. 187–192.

[2] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint precision optimization
and high level synthesis for approximate computing,” in Proc. DAC,
San Francisco, CA, USA, Jun. 2015, pp. 1–6.

[3] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, “ElasticFlow: A
complexity-effective approach for pipelining irregular loop nests,” in
Proc. ICCAD, Austin, TX, USA, Nov. 2015, pp. 78–85.

[4] J. Liu, J. Wickerson, and G. A. Constantinides, “Loop splitting for effi-
cient pipelining in high-level synthesis,” in Proc. FCCM, Washington,
DC, USA, May 2016, pp. 72–79.

[5] W. Zuo et al., “Improving polyhedral code generation for high-level syn-
thesis,” in Proc. CODES ISSS, Montreal, QC, Canada, Sep./Oct. 2013,
pp. 1–10.

[6] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “ABACUS: A technique for
automated behavioral synthesis of approximate computing circuits,” in
Proc. DATE, Dresden, Germany, Mar. 2014, pp. 1–6.

[7] A. Canis et al., “LegUp: High-level synthesis for FPGA-based pro-
cessor/accelerator systems,” in Proc. FPGA, Monterey, CA, USA,
Feb./Mar. 2011, pp. 33–36.

[8] S. Lee et al., “Statistical quality modeling of approximate hardware,” in
Proc. ISQED, Santa Clara, CA, USA, Mar. 2016, pp. 163–168.

[9] S. K. O. Venkata, “SD-VBS: The San Diego vision benchmark suite,”
in Proc. IISWC, Austin, TX, USA, 2009, pp. 55–64.

ALOCHANA JOURNAL (ISSN NO:2231-6329) VOLUME 8 ISSUE 1 2019

PAGE NO: 213

