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Abstract— In error-tolerant applications, approximate 

computing (AC) trades computational precision for performance 
or energy advantages. Utilizing operation-level approximations, 
AC-aware high-level synthesis tools at the hardware level 
produce a quality-reduced register-transfer level design from an 
accurate high-level description. Although the primary focus of 
present technologies is energy savings, our concentration is on 
performance optimizations. Often, loops are the most important 
application code structures in terms of performance. In a loop, 
iterations might have varying implications on output quality due 
to an inherent data-dependency of approximations. We describe 
a novel technique that maximizes performance benefits by 
clustering iterations based on data statistics and using various 
approximations in each cluster. This technique takes advantage 
of iteration-wise data fluctuations. Up to 76% more performance 
can be achieved, with clustering accounting for up to 21.7% of 
that gain. 

I. INTRODUCTION 

IGH-LEVEL synthesis (HLS) tools are widely used in 
designing hardware accelerators for compute-intensive 

applications. They automatically generate a register-transfer 
level (RTL) design from a high-level description. For inher- 
ently error-tolerant applications, recent work [1], [2] incorpo- 
rates approximating computing (AC) concepts into HLS by 
applying operation-level approximations to tradeoff compu- 
tational quality. Existing AC-aware HLS tools target energy 
savings. In this letter, we study a novel approach that targets 
performance gains. 

Loops are often the performance-critical parts of applica- 
tions, and as such have been studied extensively in traditional 
HLS. Unrolling and pipelining are two widely used optimiza- 
tion techniques. A wide range of advanced loop optimizations 
have been proposed until recently [3]–[5], but none of them 
considers quality as a design metric. The quality impact of 
hardware approximations is inherently data-dependent. At the 
same time, data statistics can vary across loop iterations. 
Existing AC-aware HLS tools fully unroll all loops or treat 
all iterations the same. Complete unrolling of loops allows 
fine-grain, data-specific optimizations to be applied at the 
individual operation level, but breaks the regularity of loop 
structures and results in high area and control overheads, espe- 
cially for large iteration counts. By contrast, keeping loops 
rolled and approximating all iterations in the same way ignores 
iteration-wise variations, which is suboptimal. 

 
 

 

Fig. 1. Overview of our loop optimization framework. 

We propose an approach that enables fine-grain, iteration- 
specific optimizations, while keeping overall loop structures 
intact. We cluster loop iterations according to their similarity in 
data statistics and apply different approximations for each clus- 
ter. In doing so, we employ a quality-performance optimization 
approach that automatically finds the best iteration clusters and 
their approximation levels. Our goal is performance maximiza- 
tion under quality constraints, and, without loss of generality, 
we utilize operation eliminations as hardware approximation 
technique. This approximation removes operations that have 
a small impact on output quality by replacing their output 
with zero [1], [6]. Eliminated operations can be effectively 
exploited during HLS scheduling to reduce clock cycles and 
hence increase performance. 

II. OVERVIEW 

We integrate our loop optimization into the AC-aware HLS 
tool from [1], which is built on top of the LLVM-based 
LegUp HLS framework [7]. Fig. 1 shows an overview of 
our optimization flow with differences from [1] highlighted. 
The work in [1] automatically generates approximated RTL 
designs from an accurate high-level C description under given 
output quality constraints, and an optimization setup that 
includes user-specified or automatically identified approxima- 
tion points, which are variables in the high-level C description 
to apply approximations to. In [1], a profiling step collects 
data statistics from simulations of the accurate design and 
performs a prescheduling to obtain operation mobilities and 
total latency (L). In our case, we also obtain the initiation 
interval (II) of all loops specified to be pipelined by the user. 
The main extension in our flow is the loop clustering step 
inserted after profiling. We use iteration-wise data statistics 
at approximation points weighted by their estimated quality 
and noise sensitivity to compute a distance metric used for 
clustering. A hierarchical clustering algorithm then determines 
the optimal mappings of iterations to clusters, for all possible 
numbers of clusters from one to the number of iterations. In 
the process, we reorder iterations (if possible) to find optimal 
clusters and maximize gains. 
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Some elements in Di should contribute less to clustering 
due to their small impact on output quality. For example, 
an approximation at a multiplier input causes a larger noise 
than the same approximation at a multiplier output. Therefore, 
when we cluster iterations, iteration-wise differences in mul- 
tiplier outputs should be weighted down. This quality impact 
is a function of the DFG and data statistics. For each approx- 
imation point p, we analytically estimate its impact as the 
output noise δp resulting from a truncation of 1 least sig- 
nificant bit using the method in [8]. We then use the δp 
normalized against the maximum δmax to compute a weighted 

Fig. 2.   Iteration clustering and optimization. D
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i Clustering results are given to the final optimization and 0,i P−1,i p,i D may have larger varia- 
In addition, some elements in i 

code generation steps. The optimization finds a solution that 
maximizes approximation benefits. We build on the solver 
from [1], which uses an efficient heuristic search coupled 
with semi-analytical quality and energy models to find quality- 
energy optimized designs. We replace the energy model with 

tions across iterations but a smaller average value than others. 
Due to the relative nature of noise, such elements should be 
counted more in determining clusters. To apply such effects, 
we use dispersion indices φp σ 2/μp  computed as the ratio of variance  2 

a performance model and iteratively run the solver to find the {D D σp and mean μp of iteration-wise signal powers 
best number of clusters and their approximations that max- p,0, p ,1,..., Dp,I−1} at approximation point p. We nor- 
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imize performance gains. With the optimization results, we 
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modify the rolled dataflow graph (DFG) and execute HLS i 0,i P−1,i p,i p,i 
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scheduling and binding to generate the Verilog RTL code. 

 

III. SELECTIVE   LOOP   OPTIMIZATION 

Fig. 2 illustrates our loop optimization concept. Let the 
accurate high-level description of the input design contains 

 

The P I multidimensional vector D becomes the input 
clustering. We apply two commonly used distance met- 
rics: Euclidean and cosine distances. The Euclidean dis- 

tance between iteration i and j is calculated as MEU 
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and iteration counts, s.t. the average quality across all iterations 
meets constraints and the total sum of iteration counts is I. 

 

A. Profiling 

Using the given testbench, we run a c simulation of the 

We build an I   I matrix M out of elements Mi,j representing 
the distances of iterations i and j. M is symmetric with zero 
diagonal elements. 

2) Iteration Reordering and Clustering: In many cases, 
data statistics Di are not aligned with iteration sequences, mak- 

unrolled design to obtain statistical information Dp,i = μ2 + ing clustering along existing boundaries nonoptimal. Better 
2 
p,i of the application data at each approximation point p in 

2 
clusters can be found if we reorder iterations according to 
Mi,j. Reordering is applicable for loops that do not have loop- 

each iteration i, where μp,i is the mean and σp,i the variance. 

Profiled statistics are used for clustering and quality estimation, 
i.e., final synthesis results depend on inputs used in profiling. 

We also run the scheduler from [7] on the rolled loops in the 
input design to extract the accurate loop body’s latency (Lac) 
and, if pipelined, initiation interval (IIac). We also obtain the 
scheduling table MAPsch, where MAPsch(t) returns the set of 
operations scheduled in clock cycle t. 

Finally, we build a mapping table MAPas of all operations 
in the loop body that can be jointly eliminated. For example, if 
an addition is eliminated, i.e., approximated to zero, all of its 
predecessor operations become unnecessary and can also be 
eliminated. In addition, any adder successors can be bypassed, 
and multiplier successors can be eliminated. MAPas is used 
for performance estimation during our optimization step. 

 

B. Loop Clustering 

Using the profiling and scheduling information, we perform 
loop clustering according to iteration-wise data statistics. 

1) Distance Metric: We cluster iterations using a dis- 
tance metric computed from the P-dimensional vectors Di 
(D0 , i,..., DP 1,i), i 0 , . . . ,  I 1 . We first scale data 
statistics Di to account for their quality and noise sensitivity. 

carried dependencies. Even if there exists a dependency, loops 
that successively compute a sum of all iteration outputs, such 
as filters, can be reordered. 

Our reordering algorithm first finds an initial iteration pair 
(i and j) that has a minimum distance. This pair becomes the 
seed for reordering. We then find the iteration that is closest to 
i or j, and append this iteration before i or after j to become the 
new first or last iteration, respectively. We successively append 
iterations until there is none remaining. The result is a mapping 

table MAPro(ir) that returns the original iteration index i for 
each reordered iteration ir. We also collect distances between 

adjacent reordered iterations, M
r

r r  , ir  0 , . . . ,  I  2 . We 
pass this information to clustering. If reordering is not applied, 
we directly pass the original iteration indices and adjacent 
distances Mi,i 1, i 0 , . . . ,  I 2 to clustering. 

K-means and hierarchical clustering are widely used clus- 
tering algorithms. We adopt hierarchical clustering since it 
provides results for different numbers of clusters and does 
not have a random behavior in its initial seed selection. 
Hierarchical clustering is performed using the mappings and 
distances from reordering. It iteratively merges adjacent iter- 
ations that have minimum distance into clusters. We run 
hierarchical clustering starting from I down to 1 cluster, and 

M 

a loop with I iterations and P approximation points that are 

M 

σ 
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record the intermediate results for all possible cluster counts 
C  1, 2 , . . . ,  I . For each C, the result is a mapping table 
MAPC of iterations to clusters. MAPC(c) returns the set of 

iteration indices in the cth of C clusters (0 ≤ c < C). 

C. Quality-Performance Optimization 

Our optimization problem is to find the best number of 
clusters and their approximations that maximize performance 
benefits under quality constraints. Our decision variables sp,c 
are binary, where sp,c 1 iff the operation at approximation 
point p in cluster c is eliminated, and sp,c 0 otherwise. 
We propose a heuristic that iteratively increments the num- 
ber of clusters and finds approximations for all clusters until 
no more performance gain is achieved. Our heuristic reuses 
the optimization solver from [1]. For a given clustering and 
corresponding decision variables, the solver in [1] can find 
near-optimal approximations with a dramatically reduced com- 
plexity using analytical quality and energy models. We replace 
the energy model in [1] with a performance model. For quality 
estimation, we use the analytical quality model from [1]. 

1) Performance Model: Processing time is the product of 
the number of clock cycles T and the maximum critical path 
delay across all cycles. The latter can be reduced by other 
types of approximations, such as precision scaling, but only 
when the approximation is applied in the most critical cycles 
across the entire design, which limits benefits. Therefore, in 
this letter, we only consider operation eliminations targeting 
reductions of T for performance improvement. 

T is determined from the II and L of each cluster. We esti- 
mate IIc and Lc of cluster c using MAPsch and MAPas of 
the accurate design obtained during profiling. When approx- 
imating operation p in cluster c, it can open a set of other 
operation eliminations. By excluding operations in MAPas(p) 
for all eliminated p in cluster c from MAPsch, we determine 
the number of clock cycles that do not have any operations 
scheduled after approximations, which results in an estimated 
latency reduction of Lred. The new latency of the cluster thus 

red 
c 

If pipelining is applied, the II of each cluster is esti- 
mated by similarly checking how many memory accesses 

TABLE I 

EXAMPLE  SETUP 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 

 

are identified in the accurate, unclustered loop body. For a C 
larger than 1, each cluster has its own V decision variables, 
and the V original decision variables are expanded into V C 
new decision variables according to MAPC. 

The solver from [1] uses a breadth-first search to succes- 
sively evaluate different approximation solutions. For each 
solution, we modify the solver to first find its effective number 
of clusters, Ceff. Ceff is the number of clusters that truly have 
different approximations. For example, if two among C 3 
clusters have the same approximations, there is no need to 
leave the three clusters separated. Instead, we merge the two 
clusters into one, and Ceff becomes 2. We then let the solver 
estimate the quality and performance for the effective clusters 
and their approximations. 

The solver returns the evaluated solution that has the small- 
est T. We stop increasing C if T does not improve any more. 

The last solution consisting of the best Copt and corresponding 
approximations is returned as the final optimization result. 

D. Synthesis 

With the final solution from the optimization, we synthe- 
size approximated Verilog RTL code. We first modify the 
intermediate representation (IR) of the accurate design to cre- 
ate multiple serial copies of a loop. Each effective cluster’s 
approximation level and the number of iterations in each 
cluster is then used to adjust the code for each loop. After 
modifying the IR, we run standard scheduling and binding in 
HLS. When generating an RTL code, MAPro is applied for 
iteration reordering as an address lookup table. 

IV. RESULTS 

We present experimental results for three examples from [1]. 
Table I summarizes our setup. All examples are constrained 
by their output signal-to-noise ratio (SNR). In all cases, all 

(Nred ) and arithmetic operations (Nred and Nred ) using shared 
mem add mul external inputs and internal multiplier outputs were manu- 

resources can be eliminated by approximations. For clus- 
ter c, the remaining numbers of operations are computed as 

Nop,c = Nop,ac − Nred , where op ∈ {mem, add, mul} is the 

ally selected as approximation points. conv2d is not pipelined, 
while all other examples are. For all experiments, we allowed 
the tool to explore up to 5 clusters (CMAX = 5). For the per- 

operation type. Here, Nop,ac are the number of respective 
operations in the accurate loop body. 

With Nop,c, we follow the initial II determination method 
under resource constraints in [7] and estimate a new IIc as 

IIc = min(Nop,c/Ncon). Here, Ncon  is the constraint on the 
number of memory ports, e.g., Ncon = 2 for a dual port mem- 

formance model, Ncon     1 and Ncon     4 are assumed. There 
is no resource constraint on the number of adders. 

Table II summarizes results. For the three examples, we run 
our clustering optimization for a relatively low (10 dB), medium 
(20 dB), and high (30 dB) SNR, and we compare performance 
from our approach to that of an accurate design (Tac). We 

ory. Ncon mem also compare our performance against an approximated design 
 

type 
op    is the resource constraint for arithmetic operation 

op ∈ {add, mul}. 
without clustering (NC). For each SNR, we apply three opti- 
mization levels: 1) clustering with raw data statistics and no 

With estimated Lc and IIc, the total number of clock 
c.ycles 

II
for   a   pipelined   design 

I 
is   estimated   as   T = 

iteration reordering (C); 2) clustering using the modified data 

statistics, but no iteration reordering (C + D
rr 

); and 3) clustering 
of cluster c. The II becomes the main target for reduc- 
tions through approximations. Without pipelining, T 

c C Lc Ic, and only a reduction in Lc matters. 
2) Optimization: Our heuristic iteratively calls the solver 

in [1] to obtain an approximation that maximizes a reduction in 
T for a given number of clusters C, successively increasing C 
starting from C    1, i.e., without clustering, up to CMAX. For 
a given C, we first update decision variables to be used in the 
solver, using the clustering result MAPC. Before clustering, V 
decision variables and their mappings to approximation points 

is used as the default metric. We also provide results using 

cosine distances for C D
rr 

RO Cos. 
Gains vary across examples and SNR levels. Maximum 

performance improvements of 69% and 76% are observed in 
idct at 20 dB and 10 dB SNRs. This corresponds to a PSNR of 
32 dB and 22 dB, where the accurate idct has a PSNR of 48 dB. 
The maximum gain from clustering is 21.7% in quatmul at the 
lowest SNR. The idct has the largest iteration-wise variation in 
its input data, but NC baseline gains limit additional clustering 
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Fig. 3.   Performance-area design space. (a) conv2d. (b) quatmul. (c) idct. 

TABLE II 

OPTIMIZATION  RESULTS  COMPARED  TO Tac  IN  TABLE  I 

 

 
benefits (up to 11.7%). Other examples have smaller iteration- 
wise variations, but little to no NC gains, and thus larger 
clustering gains. The choice between Euclidean and cosine 
distances depends on the application and inputs. In conv2d, 
cosine distances provide higher or the same gains than Euclidean 
ones for all SNRs. By contrast, Euclidean distances generally 
work better in other examples. In general, C D

rr 
RO gives 

the best results. There is no clustering gain in quatmul at 30 dB 
since there is no opportunity for operation eliminations, and 
having multiple clusters only introduces overhead. 

Even though we evaluate up to five clusters, Copt ends up 
being less than four in all cases. For pipelined examples, this 
is due to pipelining overhead. Having multiple clusters only 
provides benefits if the number of reduced clock cycles due 
to II reduction can compensate for the overhead in breaking 
the pipelining structure. For the nonpipelined conv2d, Copt is 
still limited to 2. This is because the example is simple, having 
only one multiplication and addition in its loop body. As such, 
there exist only two possible approximation levels for the loop 
body, and Ceff can not be larger than 2. 

Due to control and resource replication in our HLS tool, 
creating multiple clusters increases the hardware area. This 
motivates us to compare our proposed approach to existing 
loop unrolling techniques, which provide similar area versus 
performance tradeoffs. Unrolling can open better scheduling 
opportunities while also allowing for approximations at finer 
granularity. Note that, clustering is orthogonal and can be 
combined with existing loop optimization techniques, such 
as unrolling. Fig. 3 shows the quality, area, and performance 
design space for conv2d Fig. 3(a), quatmul Fig. 3(b), and idct 
Fig. 3(c) examples using either unrolling or clustering with dif- 
ferent unroll factors and effective cluster counts, respectively. 
The x-axes show area results from Synopsys DesignCompiler, 
normalized against the area of the accurate rolled design. The 
y-axes show the T of approximated designs normalized against 
Tac. For conv2d, due to its simplicity, there are no approxi- 
mation opportunities without unrolling and clustering at any 
SNR level. Furthermore, unrolling can only be done by factors 
of 5, which is the smallest divisor of the loop iteration count. 
By contrast, clustering has no such restrictions. At 30 dB in 
quatmul and at 20 and 30 dB in idct, due to their effective 
pipelining, there are no scheduling benefits from unrolling. 

 

 
Only when additional approximations are enabled at lower 
SNRs, benefits are seen. Overall, as results show, clustering 
can either dominate unrolled designs or provide new Pareto 
choices. At all SNRs in conv2d, at 20 dB in quatmul, and at 
10 and 30 dB in idct, designs with multiple clusters work as 
new Pareto-optimal design points next to the partially unrolled 
designs. For quatmul at 10 dB and idct at 20 dB, the designs 
with 2 clusters even dominate unrolled designs. 

Runtime of our tool is dominated by the solver from [1], which 
depends on the size of the design space to explore. On an Intel 
Core i7 at 2.67 GHz, the average runtime per SNR target with 
versus without clustering is 8 s versus 3 s for conv2d, 9 min. 
versus 3 min. for quatmul, and 25 min. versus 8 min. for idct. 

 

V. CONCLUSION 

We introduced our loop optimization method for quality-

performance-area aware AC-HLS in this letter. We suggested 

a method that selectively approximates loop iterations based 

on their data-dependent impact on final output quality and 

leverages operation eliminations for speed optimization. Our 

method automatically determines the ideal number of clusters 

and approximations, including loop transformations, using an 

efficient optimization heuristic. The findings indicate that 

approximations can lead to up to 76% of performance 

increases, with finer-grained approximations resulting from 

clustering accounting for up to 22% of these gains. As of 

right now, we only offer loops that allow for iteration 

reordering. We intend to expand our methodology to include 

more approximation approaches and dependent and nested 

loop structures in the future. 
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