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Abstract

In this paper, we study the annihilator graph is a line graph and the anni-
hilator graph is the complement of a line graph. We give a full characterization
of these graphs with respect to their planar and outerplanar indices. Also, we
determine of these graphs respect to their generalized outerplanar index.
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1 Introduction

Algebraic combinatorics is an area of mathematics that employs methods of abstract
algebra in various combinatorial contexts and vice versa. Associating a graph to an
algebraic structure is a research subject in this area and has gained considerable
attention. The research in this subject aims at exposing the relationship between
algebra and graph theory and at advancing the application of one to the other.

In the literature, one can find a number of different types of graphs attached to
rings or other algebraic structures. The concept of the zero-divisor graph of a com-
mutative ring, denoted by Γ(R), was introduced by Beck [7], where he was mainly
interested in coloring. This investigation of coloring of the zero-divisor graph of a
commutative ring was then continued by Anderson and Naseer. The above defini-
tion later appeared in [5], which contained several fundamental results concerning
the graph Γ(R). The zero-divisor graphs of commutative rings has been studied
by several authors. A similar work on the zero-divisors done by Badawi [6]. He
defined the annihilator graph AG(R) of a commutative ring R, which is a graph
whose vertices are Z(R)∗ and two vertices x and y are joined by an edge if and only
if ann(xy) 6= ann(x) ∪ ann(y). Several authors studied about various properties of
these graphs including diameter, girth, domination and genus. In this paper, we
study the annihilator graph is a line graph and the annihilator graph is the comple-
ment of a line graph. We give a full characterization of these graphs with respect to
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their planar and outerplanar indices. Also, we determine of these graphs respect to
their generalized outerplanar index.

Let G be a graph. We use the notation V (G) and E(G) for vertex set and edge
set of G, respectively. Also, Pn and Cn are used to denote a path and a cycle on n
vertices, respectively. A graph is complete if every vertex is adjacent to every other
vertex. The complete graph with n vertices is denoted by Kn. A bipartite graph is
a graph which its vertex set is a union of two disjoint sets V1 and V2 such that every
edge connects a vertex in V1 to one in V2. A bipartite graph is complete bipartite
if the vertex in each part is connected to every vertex in the other part. We denote
the complete bipartite graph with parts of size m and n by Km,n. we recall G is a
planar graph if it can be drawn on the plane in such a way that its edges intersect
only at their endpoints. The graph G is an outerplanar graph if it can be drawn
on the plane without crossings in such a way that all of the vertices belong to the
external face of the drawing. Also, G is a generalized outerplanar graph if it can be
drawn on the plane in such a way that at least one end-vertex of each edge lies on
the external face.

The line graph of a graph G, denoted by L(G), is defined as a graph in which
each vertex represents an edge of G and two vertices are adjacent if and only if
their corresponding edges share a common endpoint in G. In recent years, the
investigation of iterated line graphs has recorded a large progress. The kth iterated
line graph of G is denoted by Lk(G) and these graphs are defined inductively as
follows: L0(G) = G, L1(G) = L(G) is the line graph of G and Lk(G) = L(Lk−1(G)).
The planarity index of graph G was defined as the smallest k such that Lk(G) is
non-planar. We denote the planarity index of G by ξ(G). If Lk(G) is planar for all
k ≥ 0, we define ξ(G) = ∞. It was shown in [16] that if G is non-planar then L(G)
is also non-planar.

Through out this paper, we assume that R finite commutative ring with identity,
Z(R)∗ is set of all non- zero divisor of R, U(R) its group of units, Fq denote the field
with q elements. Furthermore, for the convenience of the reader, we state without
proof a few known results in the form of theorems, which will be used in the proofs
of the main theorems.

Theorem 1.1. [6, Theorem 3.10] Let R be an non-reduced commutative ring with
|Nil(R)∗| ≥ 2 and let AGN (R) be the (induced) subgraph of AG(R) with vertices
Nil(R)∗. Then AGN (R) is complete.

Theorem 1.2. [9, Theorem 1.1] The line graph of a graph G is planar if and only
if G is planar, ∆(G) ≤ 4, and every vertex of degree 4 in G is a cut-vertex.

Theorem 1.3. [20, Theorem 14] Let (R, m) be a finite commutative local ring with
identity. Then AG(R) is planar if and only if R is isomorphic to one of the following

13 rings: Z4,
Z2[x]
〈x2〉

, Z9,
Z3[x]
〈x2〉

, Z8,
Z2[x]
〈x3〉

, Z4[x]
〈2x,x2−2〉

, F4[x]
〈x2〉

, Z4[x]
〈x2+x+1〉

, Z4[x]

〈x,2〉2
, Z2[x,y]

〈x,y〉2
, Z25

or Z5[x]
〈x2〉

.

Theorem 1.4. [20, Theorem 15] Let R ∼= R1×R2×· · ·×Rn be a finite commutative
non- local ring, where each Ri is a local ring and n ≥ 2. Then AG(R) is planar if
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and only if R is isomorphic to one of the following rings: Z2 × F, Z3 × F, Z4 × Z2,
Z2[x]
〈x2〉

× Z2 or Z2 × Z2 × Z2, where F is finite field.

2 When AG(R) and AG(R) are line graph

In this section, we classify all finite commutative rings, whose annihilator graph
and its complements are line graph. In order to do this, we will use one of the
characterizations of line graphs which was proved in [8].

Theorem 2.1. [8] Let G be a graph. Then G is the line graph of some graph if and
only if none of the nine graphs in Fig. 1 is an induced subgraph of G.
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Fig.1. Forbidden induced subgraphs of line graphs

Theorem 2.2. Let R be a finite commutative ring which is not a field. Then AG(R)
is a line graph if and only if R is isomorphic to one of the rings: Z2 × Z2 × Z2,
Z3 × Z3, Z2 × Z3 or Z2 × Z2.

Proof. Suppose AG(R) is a line graph. Since R is a finite, R ∼= R1 × R2 × · · · × Rn

where Ri is a local ring for all i = 1, 2, . . . , n.

Suppose n ≥ 4. Then it is easy to see that the subgraph induced by the set
{(1, 0, 0, 0, · · · , 0), (0, 0, 1, 1, · · · , 0), (0, 0, 0, 1, · · · , 0), (0, 1, 1, 1, · · · , 0)} in AG(R) is
isomorphic to K1,3 and hence K1,3 is a subgraph of AG(R). By Theorem 2.1,
AG(R) is not a line graph, a contradiction. Thus n ≤ 3.

Suppose n = 3 and R ∼= R1 × R2 × R3. Suppose that one of the rings Ri has at
least 3 elements. Without loss of generality, we assume that |R3| ≥ 3. Let a ∈ R3 be
an arbitrary element such that a /∈ {0, 1}. It is easy to see that the induced subgraph
by the set {(1, 0, 0), (0, 1, 1), (0, 1, a), (0, 0, 1)} is isomorphic to K1,3. Hence the graph
AG(R1 × R2 × R3) is not a line graph if one of the ring Ri has at least 3 elements.
Hence Ri are fields with |Ri| = 2 for all 1 ≤ i ≤ 3. Thus can easily see that the
graph AG(Z2 × Z2 × Z2) is the line graph of the graph K2,3.
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(0, 1, 1)

(1, 0, 0)

(0, 1, 0) (0, 0, 1)

(1, 0, 1) (0, 1, 1)

Fig. 2. AG(Z2 × Z2 × Z2)

Suppose n = 2 and R ∼= R1 × R2. Suppose that at least one of Ri is not a field.
Without loss of generality, we assume that R1 is not a field. Then |R1| ≥ 4 and so
we can find a copy of K1,3 as an induced subgraph in the graph AG(R1 × R2) and
so AG(R1 × R2)is not a line graph, a contradiction. So, Ri are fields and hence R1

and R2 has at most 3 elements. Thus R is isomorphic to one of the rings Z2 × Z2,
Z2 ×Z3 or Z3 ×Z3. It is easy to see that AG(Z2 ×Z2) ∼= P2 and it is the line graph
of the graph P3, AG(Z2 × Z3) ∼= P3 and it is the line graph of the graph P4 and
AG(Z3 × Z3) ∼= C4 and it is the line graph of the graph C4.

Finally, if n = 1, then R is local ring and by Theorem 1.1, AG(R) is complete.
Hence AG(R) is a line graph of K1,m, where m = |Z(R)∗|.

Theorem 2.3. [8] A graph G is the complement of a line graph if and only if none
of the nine graphs Gi of Fig. 3. is an induced subgraph of G.
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Fig. 3. Forbidden induced subgraphs of complement of line graphs

In the next theorem, we investigate when the graph AG(R) is the complement
of a line graph.

Theorem 2.4. Let R be a finite commutative ring which is not a field. Then AG(R)
is the complement of a line graph if and only if R is one of the rings: Z2 ×Z2 ×Z2,
Fq1

× Fq2
, Z2 ×

Z2[x]
〈x2〉

, Z2 × Z4, Z3 ×
Z2[x]
〈x2〉

or Z3 × Z4.
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Proof. Since R is a finite commutative ring which is not a field, we can write R ∼=
R1×R2×· · ·×Rn where Ri is a local ring for all i = 1, 2, . . . , n. Assume that AG(R)
is the complement of a line graph. Suppose that n ≥ 4. Then the graph AG(R) has
an induced subgraph by the set {(1, 0, 0, 0, · · · , 0), (0, 0, 1, 0, · · · , 0), (0, 1, 0, · · · , 0),
(1, 1, 1, 0, · · · , 0)} is isomorphic to G1. So the graph AG(R) is not the complement
of a line graph, a contradiction. Thus n ≤ 3

Suppose n = 3 and R ∼= R1 × R2 × R3. Suppose that one of the rings Ri

has at least 3 elements, say |R3| ≥ 3. Let a ∈ R3 be an arbitrary element
such that a /∈ {0, 1}. It is easy to see that the induced subgraph by the set
{(1, 0, 0), (0, 1, 1), (1, 0, a), (1, 0, 1), (1, 1, 0), (0, 0, 1)} is isomorphic to G4. So the graph
AG(R1 × R2 × R3) is not a line graph if one of the ring Ri has at least 3 ele-
ments. Hence Ri are fields with |Ri| = 2 for all 1 ≤ i ≤ 3. Hence the graph
AG(Z2 × Z2 × Z2) ∼= L(C6).

Suppose n = 2 and R ∼= R1 ×R2. At first, assume that |Z(Ri)|
∗ ≥ 1 for i = 1, 2.

Then |U(Ri)| ≥ 2 and ann(zi) = Z(Ri) for i = 1, 2 and for some zi ∈ R∗
i . Then,

the induced subgraph by the set {(1, z2), (z1, z2), (u, z2), (1, 0)} is isomorphic to G1,
where u is unit in R1. This implies that the graph AG(R1 ×R2) is not a line graph,
in this case. So, we assume that R1 is field and R2 is local ring but not fields. Let
|Z(R2)

∗| ≥ 2. Then there are distinct elements x and y in Z(R2)
∗ such that xy = 0

and so, the induced subgraph by the set {(0, x), (0, y), (0, 1), (0, u1), (0, u2), (1, 0)},
where u1, u2 ∈ U(R2) is isomorphic to G3, a contradiction. So, |Z(R2)| ≤ 2. If

|Z(R2)
∗| = 1, then R2

∼= Z4 or Z2[x]
〈x2〉

. Since R1 is field, suppose |R1| ≥ 4, Then, the

induced subgraph by the set {(1, z), (v1, z), (v2, z), (1, 0)} is isomorphic to G1, where
v1, v2 are distinct units in R1 other than 1 and x ∈ Z(R2)

∗. This implies that the
graph AG(R1 × R2) is not a line graph, a contradiction. Hence R1

∼= Z2 or Z3. If
R2 is field, then AG(R) is isomorphic to complete bipartite graph. In this case, R

can be one of the rings Fq1
× Fq2

, Z2 × Z4, Z2 ×
Z2[x]
〈x2〉

, Z3 × Z4, Z3 ×
Z2[x]
〈x2〉

.

It is easy to see that the graph AG(Fq1
× Fq2

) is the complete bipartite graph
Kq1−1, q2−1. Now, it is not hard to see that AG(Fq1

×Fq2
) is the complement of the

line graph of the union of two stars K1, (q1−1)(q2−2)/2 and K1, (q2−1)(q2−2)/2.

For rings Z2 × Z4 or Z2 × Z2[x]
〈x2〉

, it is easy to see that AG(R) ∼= K2,3 and the

complement of the line graph of the union two graphs P3 and K1,3. If Z3 ×
Z2[x]
〈x2〉

or

Z3 ×Z4, then the complement graph of AG(R) is the union of K4 − e and K3. It is
not hard to see that it is the complement of the line graph of the graph H and K3

Finally, if n = 1, then R is local ring but not field and AG(R) is complete.
This implies that AG(R) is the complement of the line graph of mK2, where m =
|Z(R)∗|.

K4 − e H

Fig. 4. K4 − e is the line graph of H
5
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3 The planarity and outerplanarity index of annihilator

graphs

In this section, we study the planarity and outerplanarity index of annihilator graphs
when R is a finite commutative ring. Also, we present all commutative ring which
their annihilator graphs have planarity and outerplanarity indices.

Ghebleh et al. proposed the study of planarity and outerplanarity indexes of
graphs. He gave a full characterization of graphs with respect to their planarity
index.

Theorem 3.1. [13, Theorem 10] Let G be a connected graph. Then

(i) ξ(G) = 0 if and only if G is non-planar.

(ii) ξ(G) = ∞ if and only if G is either a path, a cycle or K1,3.

(iii) ξ(G) = 1 if and only if G is planar and either ∆(G) ≥ 5 or G has a vertex of
degree 4 which is not a cut-vertex.

(iv) ξ(G) = 2 if and only if L(G) is planar and G contains one of the graphs Hi

in Fig.5 as a subgraph.

(v) ξ(G) = 4 if and only if G is one of the graphs Xk or Yk(Fig. 5) for some
k ≥ 2.

(vi) ξ(G) = 3 otherwise.
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Fig. 5

In the following theorems, we determine the planar and outerplanar index of the
annihilator graphs.

Theorem 3.2. Let R be a finite commutative ring and Fq be a finite field with q
elements. Then

(i) ξ(AG(R)) = ∞ if and only if R is isomorphic to one of the following rings:

Z2 × Z2, Z2 × Z3, Z2 × F4, Z3 × Z3, Z4,
Z2[x]
〈x2〉

, Z9,
Z3[x]
〈x2〉

, Z8,
Z2[x]
〈x3〉

, Z4[x]
〈2x,x2−2〉

,
F4[x]
〈x2〉

, Z4[x]
〈x2+x+1〉

, Z4[x]

〈x,2〉2
or Z2[x,y]

〈x,y〉2
.
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(ii) ξ(AG(R)) = 1 if and only if R is isomorphic to one of the following rings:
Z2 × Fq where q ≥ 6 or Z3 × Fq where q ≥ 5.

(iii) ξ(AG(R)) = 2 if and only if R is isomorphic to one of the following rings:

Z2 × Z2 × Z2, Z25 or Z5[x]
〈x2〉

.

(iv) ξ(AG(R)) = 3 if and only if R is isomorphic to one of the following rings:

Z2 × F5, Z3 × F4, Z2 × Z4 or Z2 ×
Z2(x)
〈x2〉

.

(v) ξ(AG(R)) = 0 otherwise.

Proof. Since R is a finite ring, R = R1 ×R2 × · · · ×Rn for some n ≥ 1 and each Ri

is a local ring. Now, we consider the following cases:

Case 1. n ≥ 4. In this case, as it was proved in Theorem 1.4, AG(R) is non-
planar. Since for every non-planar graphs we have that ξ(G) = 0, which implies
that ξ(AG(R)) = 0.

Case 2. n = 3. In Theorem 1.4, it was proved that AG(R) is planar if and only
if R ∼= Z2 × Z2 × Z2. By Fig. 2, ∆(AG(Z2 × Z2 × Z2)) = 3. Since the graph
AG(Z2 ×Z2 ×Z2) is planar, with using Theorem 1.2, we have L(AG(Z2 ×Z2 ×Z2))
is planar. Also, AG(Z2×Z2×Z2) has H4 as a subgraph. So ξ(AG(Z2×Z2×Z2)) = 2.

Case 3. n = 2. By Theorem 1.4 , it was proved that AG(R) is planar if and only

if R is isomorphic to one of the following ring: Z2 × F, Z3 × F, Z4 × Z2,
Z2[x]
〈x2〉

× Z2,

where F is field.

If R ∼= Z2×F, then AG(R) ∼= K1, |F|−1. Since R is finite and |F| = q. Hence if q ≤
4, then ξ(AG(Z2×Fq)) = ∞. If q = 5, then AG(R) ∼= K1,4 and so L(AG(Z2×F5)) ∼=
K4. Since L(K4) is a planar graph and H2 as a subgraph, we have that ξ(K4) = 2
which implies that ξ(AG(Z2 ×F5)) = 3. Clearly, if q ≥ 6, then ξ(AG(Z2 ×Fq)) = 1,
where q ≥ 6.

If R ∼= Z3 × F, then AG(R) ∼= K2,|F|−1. Since R is finite and |F| = q. Hence if
q ≤ 3, then ξ(AG(Z3×Fq)) = ∞. If q = 4, then AG(R) ∼= K2,3 is planar. As, we have
the graph L(AG(Z3×F4)) ∼= AG(Z2×Z2×Z2) is planar and ∆(L(AG(Z3×F4))) = 3.
So L(L(AG(Z3×F4))) is planar. Also, L(AG(Z3×F4)) has H4 as a subgraph. Thus
ξ(AG(Z3 × F4)) = 3. If q = 5, then AG(Z3 × F5) is planar and it has a vertex of
degree 4 which is not a cut vertex and hence L(AG(Z3×F5)) is non planar. Clearly,
if q ≥ 6, then ∆(Z3 × Fq) ≥ 5 and ξ(AG(Z3 × Fq)) = 1, where q ≥ 6.

If R ∼= Z2 × Z4 or Z2 ×
Z2(x)
<x2>

, then AG(R) ∼= K2,3 is planar. Hence L(AG(R))
is planar and ∆(L(AG(R)) = 3 by Fig. 2. So L(L(AG(R))) is planar and it has H4

as a subgraph. Thus ξ(AG(Z2 × Z4)) = 3 and ξ(AG(Z2 ×
Z2(x)
<x2>

)) = 3.

Case 4. If n = 1, then by Theorem 1.3, AG(R) is planar if and only if R is isomorphic

to one of the following 13 rings: Z4,
Z2[x]
〈x2〉

, Z9,
Z3[x]
〈x2〉

, Z8,
Z2[x]
〈x3〉

, Z4[x]
〈2x,x2−2〉

, F4[x]
〈x2〉

,
Z4[x]

〈x2+x+1〉
, Z4[x]

〈x,2〉2
, Z2[x,y]

〈x,y〉2
, Z25 or Z5[x]

〈x2〉
.

If R ∼= Z25 or Z5[x]
〈x2〉

, then AG(R) ∼= K4 and L(K4) is planar and the graphs

AG(Z25), AG(Z5[x]
〈x2〉

) have H2 as a subgraph. Hence that ξ(AG(Z25)) = 2, ξ(AG(Z5[x]
〈x2〉

)) =

2. Otherwise, we have |Z(R)∗| ≤ 3. Hence ξ(AG(R)) = ∞.
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Theorem 3.3. [14, Theorem 3.4] Let G be a connected graph. Then:

(i) ζ(G) = 0 if and only if G is not outerplanar.

(ii) ζ(G) = ∞ if and only if G is a path, a cycle or K1,3.

(iii) ζ(G) = 1 if and only if G is planar and G has a subgraph homeomorphic to
K2,3, K1,4 or K1 + P3 in Fig.6.

(iv) ζ(G) = 2 if and only if L(G) is outerplanar and G has a subgraph isomorphic
to one of the graphs G2 and G3 in Fig. 6.

(v) ζ(G) = 3 if and only if G ∈ I(d1, d2, . . . , dt) where di ≥ 2 for i = 2, . . . , t − 1,
and d1 ≥ 1 (Fig. 6).
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Now, we determine for all finite commutative rings whose outerplanarity index
of their annihilator graphs.

Theorem 3.4. [18, Theorem 2.1] Let R be a finite commutative ring with identity.
Then AG(R) is outerplanar if and only if R is isomorphic to one of the following

rings: Z4,
Z2[x]
〈x2〉

, Z9,
Z3[x]
〈x2〉

, Z8,
Z2[x]
〈x3〉

, Z4[x]
〈x3,x2−2〉

, F4[x]
〈x2〉

, Z4[x]
〈x2+x+1〉

, Z4[x]
〈2x,x2〉

, Z2[x,y]

〈x,y〉2
, Z2 × F

or Z3 × Z3, where F is field.

In the next theorems we study the outerplanar index of the annihilator graphs.

Theorem 3.5. Let R be a finite commutative ring and Fq is finite field with q
elements. Then

(i) ζ(AG(R)) = ∞ if and only if R is isomorphic to one of the following ring:

Z2 × Z2, Z2 × Z3, Z2 × F4, Z3 × Z3, Z4,
Z2[x]
〈x2〉

, Z9,
Z3[x]
〈x2〉

, Z8,
Z2[x]
〈x3〉

, Z4[x]
〈x3,x2−2〉

,
F4[x]
〈x2〉

, Z4[x]
〈x2+x+1〉

, Z4[x]
〈2x,x2〉

or Z2[x,y]

〈x,y〉2
.

(ii) ζ(AG(R)) = 1 if and only if R ∼= Z2 × Fq, where q ≥ 5.

(iii) ζ(AG(R)) = 0 otherwise

8
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Proof. Case 1. n ≥ 3. In this case, as it was shown in Theorem 3.4, AG(R) is
non-outerplanar. Since for every non-outerplanar graphs we have that ζ(G) = 0,
which implies that ζ(AG(R)) = 0.

Case 2. n = 2, In Theorem 3.4, AG(R) is outerplanar if and only if Z2×F or Z3×Z3,
where F is field.

If R ∼= Z2 × F, then AG(R) ∼= K1,|F|−1. Since R is finite and let |F| = q. Hence
if q ≤ 4, then ζ(AG(Z2 × Fq)) = ∞. If q ≥ 5, then AG(R) ∼= K1,q−1 and so
L(AG(Z2 × Fq)) ∼= Kq−1 and it has K4 as a subgraph. So K4 is non-outerplanar
and ζ(AG(Z2 × Fq)) = 1 when q ≥ 5.

If R ∼= Z3 × Z3, then AG(R) ∼= C4 and it has ζ(AG(Z3 × Z3)) = ∞.

Case 3. n = 1, we have AG(R) is outerplanar if and only if R is isomorphic to

one of the following ring: Z4,
Z2[x]
〈x2〉

, Z9,
Z3[x]
〈x2〉

, Z8,
Z2[x]
〈x3〉

, Z4[x]
〈x3,x2−2〉

, F4[x]
〈x2〉

, Z4[x]
〈x2+x+1〉

,
Z4[x]
〈2x,x2〉

, Z2[x,y]

〈x,y〉2
. Also, we know that all the ring contains at most three zero-divisor

and AG(R) is complete. Thus ζ(AG(R)) = ∞.

4 Generalized outerplanar of annihilator graphs

In this section, we characterize all finite commutative rings having annihilator graphs
which are generalized outerplanar graphs.

In 1964, Sedláćek studied the generalized outerplanar graphs and he gave a char-
acterization for generalized outerplanar graphs in terms of forbidden subgraphs in
[17]. We state his characterization in the following theorem. A generalized outer-
planar graph is a planar graph which can be embedded in the plane in such a way
that at least one end-vertex of each edge lies on the external face. Moreover, for
any outerplanar graph G are generalized outerplanar. Which implies that G planar
graph. We state his characterization in the following theorem.

Theorem 4.1. [17] Let G be a graph. G is generalized outerplanar if and only if
no subgraph of G is homeomorphic to any of the graphs in Fig. 7.
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Fig.7. Forbidden subgraphs of generalized outerplanar graphs

Theorem 4.2. Let R be a finite commutative ring with non-zero identity and Fq be
a finite field with q elements. Then AG(R) is a generalized outerplanar if and only

if R is one of the following rings: Z2 × Fq, Z3 × Fq, Z4 × Z2,
Z2[x]
〈x2〉

× Z2 , Z4,
Z2[x]
〈x2〉

,

Z9,
Z3[x]
〈x2〉

, Z8,
Z2[x]
〈x3〉

, Z4[x]
〈2x,x2−2〉

, F4[x]
〈x2〉

, Z4[x]
〈x2+x+1〉

, Z4[x]

〈x,2〉2
, Z2[x,y]

〈x,y〉2
, Z25 or Z5[x]

〈x2〉
.

Proof. We know that if AG(R) is non planar, it can’t be a generalized outerplanar
graph. So we assume that AG(R) is planar graph. Since R is finite ring, R =
R1 × R2 × · · · × Rn, where n ≥ 1 and each Ri is a local ring. Now, we consider the
following cases:

Case 1. Suppose that n ≥ 4. In [20] was proved that AG(R) is non-planar. So the
graph AG(R) is not generalized outerplanar graph in this case.

Case 2. Assume n = 3. It was proved that AG(R) is planar if and only if R ∼=
Z2 × Z2 × Z2. By Theorem 3.4, AG(Z2 × Z2 × Z2) is not outerplanar. Also, the
graph AG(Z2 × Z2 × Z2) is isomorphic to the graph of (11) of Fig. 7. Hence
AG(Z2 × Z2 × Z2) is not generalized outerplanar graph.

Case 3. Assume that n = 2. It was proved that AG(R) is planar if and only if

R ∼= Z2 × F , Z3 × F, Z2 × Z4 or Z2 ×
Z2[x]
〈x2〉

. Let R ∼= Z2 × Z4 or R ∼= Z2 ×
Z2[x]
〈x2〉

.

It is easy to check that AG(Z2 × Z4) = K2,3 and AG(Z2 × Z2[x]
〈x2〉

) = K2,3. Hence

the graphs AG(Z2 × Z4) and AG(Z2 × Z2[x]
〈x2〉

) are generalized outerplanar graphs.

Let R ∼= Z2 × F and R ∼= Z3 × F. It is easy to check that AG(Z2 × F) = K1,|F|−1
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and AG(Z3 × F) = K2,|F|−1. Hence the graphs AG(Z2 × F) and AG(Z3 × F) are
generalized outerplanar graphs.
Case 4. Assume that n = 1. So R is a local ring and AG(R) is complete. Since

AG(R) is planar, by Theorem 1.3, R is isomorphic to following rings: Z4,
Z2[x]
〈x2〉

, Z9,
Z3[x]
〈x2〉

, Z8,
Z2[x]
〈x3〉

, Z4[x]
〈2x,x2−2〉

, F4[x]
〈x2〉

, Z4[x]
〈x2+x+1〉

, Z4[x]

〈x,2〉2
, Z2[x,y]

〈x,y〉2
, Z25 or Z5[x]

〈x2〉
. It is easy to

see that AG(R) ∼= Km, where m ≤ 4. Therefore the graphs of all the local ring are
generalized outerplanar graph.

Now, we study the generalized outerplanar index of the graph annihilator graph.
Recall that the generalized index of a graph G, denoted by γ(G), is the smallest
k such that Lk(G) is not a generalized outerplanar graph and this index equals
to infinity if Lk(G) is a generalized outerplanar graph for all k ≥ 0. we give a
complete characterization of finite commutative rings with respect to the generalized
outerplanar index of AG(R) graphs. In order to do this, we use the following theorem
which was proved in [10].

Theorem 4.3. [10] Let G be a connected graph. Then

(i) γ(G) = 0 if and only if G has a subgraph homeomorphic to one of the twelve
graphs shown in Fig. 7.

(ii) γ(G) = ∞ if and only if G is a path, cycle or K1,3.

(iii) γ(G) = 1 if and only if G is generalized outerplanar graph and it has a subgraph
homeomorphic to one of the seven graphs shown in Fig.8.

(iv) γ(G) = 2 if and only if L(G) generalized outerplanar graph and G has a
subgraph from one of the five graphs shown in Fig.9.

(v) γ(G) = 3 if and only if one of the following conditions hold:

(1) L2(G) is generalized outerplanar and G has a subgraph homeomorphic
to the graph of Fig.10(b).

(2) G is the graph which is drawn in Fig.10(a).

(vi) γ(G) = 4 if and only if G is one of the graphs Xk or Yk with k ≥ 3 Fig.5.
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I II III IV
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Fig.8. Forbidden subgraphs for graphs with generalized outerplanar line graphs
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Fig.9. Forbidden subgraphs for graphs with generalized outerplanar L2(G)
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e

Fig. 10
(b)generalized outerplanar L3(G)(a) I(d1, d2, . . . , dt) where di ≥ 2 for i = 2, . . . , t − 1, and d1 ≥ 1
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In this theorem, we characterize all of the finite commutative rings with respect
to the generalized outerplanar index of their annihilator graphs.

Theorem 4.4. Let R be a finite commutative ring and Fq be a finite field with q
elements. Then

1. γ(AG(R)) = ∞ if and only if R is isomorphic to one of the following rings:

Z2 × Z2, Z2 × Z3, Z2 × F4, Z3 × Z3, Z4,
Z2[x]
〈x2〉

, Z9,
Z3[x]
〈x2〉

, Z8,
Z2[x]
〈x3〉

, Z4[x]
〈2x,x2−2〉

,
F4[x]
〈x2〉

, Z4[x]
〈x2+x+1〉

, Z4[x]

〈x,2〉2
, Z2[x,y]

〈x,y〉2
.

2. γ(AG(R)) = 1 if and only if R is isomorphic to one of the following rings:

Z2 × Fq where q ≥ 6, Z3 × Fq where q ≥ 4, Z2 ×
Z2(x)
〈x2〉

, Z2 × Z4 , Z25 or Z5[x]
〈x2〉

.

3. γ(AG(R)) = 2 if and only if R ∼= Z2 × F5.

4. γ(AG(R)) = 0 otherwise

Proof. We know that if AG(R) is not a generalized outer planar graph, then γ(AG(R)) =
0. So, we may assume that AG(R) is generalized outerplanar graph. Then R is one
of the rings which are listed in Theorem 4.2. Clearly, by the definition of planar
index and generalized outer planar index, it is easy to see that γ(G) ≤ ξ(G) for a
graph G. So we have assume that γ(G) ≤ ξ(G). Now, we discuses the following
cases:

Case 1. Assume that ξ(AG(R)) = ∞. By Theorem 3.1, AG(R) is either a path, a
cycle or K1,3. Thus by Theorem 4.3, γ(AG(R)) = ∞. Now, by Theorem 3.2, R is

one of the following rings: Z2 × Z2, Z2 × Z3, Z2 × F4, Z3 × Z3, Z4,
Z2[x]
〈x2〉

, Z9,
Z3[x]
〈x2〉

,

Z8,
Z2[x]
〈x3〉

, Z4[x]
〈2x,x2−2〉

, F4[x]
〈x2〉

, Z4[x]
〈x2+x+1〉

, Z4[x]

〈x,2〉2
, Z2[x,y]

〈x,y〉2
.

Case 2. Assume that ξ(AG(R)) = 1. So by Theorem 3.2, R is isomorphic to Z2×Fq

where q ≥ 6 or Z3 × Fq where q ≥ 5.

If R ∼= Z2 × Fq where q ≥ 6. We know AG(R) ∼= K1,q−1. So the generalized
outerplanar graph which has a subgraph isomorphic to K1,5. Therefore, by part (iii)
of Theorem 4.3, we concluded that γ(AG(Z2 × Fq)) = 1 when q ≥ 6.

If R ∼= Z3 × Fq where q ≥ 5. We know AG(R) ∼= K2,q−1. So the generalized
outerplanar graph and it has a subgraph isomorphic to the graph II of Fig. 8 .
Therefore, by part (iii) of Theorem 4.3, we concluded that γ(AG(Z3 × Fq)) = 1
when q ≥ 5.

Case 3. Assume that ξ(AG(R)) = 2. So by Theorem 3.2, R is isomorphic to Z2×Z2×

Z2, Z25 or Z5[x]
〈x2〉

. By using Theorem 4.2, AG(Z2 × Z2 × Z2) is not generalized outer

planar graph and γ(AG(R)) = 0. Also, AG(Z25) and AG(Z5[x]
〈x2〉

) are isomorphic to K4

and these are generalized outerplanar graphs. So the graphs have a subgraph which
is isomorphic to the graph III of Fig. 8. Thus γ(AG(Z25)) = 1 and γ(AG(Z5[x]

〈x2〉
)) = 1.

Case 4. If ξ(AG(R)) = 3, then by Theorem 3.2, R ∼= Z2 × F5, Z3 × F4, Z2 × Z4 or

Z2 ×
Z2(x)
〈x2〉

. If R ∼= Z2 ×F5, then AG(R) ∼= K1,4 and so L(AG(Z2 ×F5)) ∼= K4. This

implies that the graph AG(Z2 × F5) and its line graph are generalized outerplanar
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graphs. Also, the graph AG(Z2×F5) has subgraph which is isomorphic to the graph
G1 of Fig. 6. So, by part (iii) of Theorem 4.3, we have that γ(AG(Z2 × F5)) = 2.

Now, let R ∼= Z3×F4. Since AG(Z3×F4) ∼= K2,3, this graph is isomorphic to the
graph II of Fig. 8. and AG(R) is generalized outerplanar. Thus γ(AG(Z3×F4)) = 1.

If R ∼= Z2 × Z4 or R ∼= Z2 ×
Z2(x)
〈x2〉

, then AG(Z2 × Z4) and AG(Z2 ×
Z2(x)
〈x2〉

) are

isomorphic to K2,3. Thus the graph is isomorphic to the graph II of Fig. 8. So

γ(AG(Z2 × Z4)) = 1 and γ(AG(Z2 ×
Z2(x)
〈x2〉

)) = 1.
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[16] J. Sedláćek, Some properties of interchange graphs. In: Theory of Graphs
and its Applications (Proceedings of the Symposium, Smolenice,1963), Publishing
House of the Czechoslovak Academy of Sciences, Prague, (1964), 145–150.
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