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Abstract— Traffic accidents are often inaccurately reported, 

with incorrect location and disruption duration due to various 
external factors. This can result in imprecise predictions and 
inaccurate decision-making in data-driven models. To address 
these challenges, our study presents a comprehensive frame- 
work for traffic disruption segmentation from traffic speed data 
(obtained from Caltrans Performance Measurements system) in 
the time-space proximity of reported accidents (from Coun- 
trywide Traffic Accident dataset). Furthermore, we evaluate 
multiple machine learning models on reported, estimated, and 
manually marked disruption intervals, and demonstrate that our 
enhanced modelling approach reduces the root mean squared 
error (RMSE) of traffic accident duration prediction while 
providing higher similarity with disruptions observed in traffic 
speed. Our algorithm yields higher disruption detection precision 
than reported accident timelines. Although using multiple seg- 
ments offers a slight decrease in the quality of results, it highlights 
more disruptions. Future research could explore expanding the 
algorithm’s complexity and applying it to improve traffic incident 
impact predictions. 

Index Terms— Traffic management, traffic operations, traffic 
safety, accidents, accident detection, performance evaluation, 
traffic simulation, level of services, machine learning. 

 

I. INTRODUCTION 

RAFFIC accidents are a significant concern worldwide, 

causing fatalities, injuries, and economic losses. The 

number of vehicles has been substantially increasing during 

the past decades, which currently leads to an increase in 

the number of traffic accidents [1]. The National Highway 

Traffic Safety Administration (NHTSA) reported more than 

5 million traffic accidents happening in the United States 

during the year 2013 [2]. Traffic Management Agencies  

 

 

 

usually rely on Traffic Incident Management Systems (TIMS) to 

collect data on traffic accidents, including information on 

various accidents, traffic states and environmental conditions. 

Accurately predicting the total duration of an incident shortly 

after it is being finished, will help in improving the effectiveness 

of accident response by providing important 

 

information to decide the required resources to be allocated 

(response team size, equipment, traffic control measures) [3]. 

A traffic accident is a rare event with stochastic nature. The 

effect of the accident can be observed as an anomalous state 

in the time series of traffic flow [4]. 

Various terms and concepts are employed in the field of 

traffic accident duration prediction. Key terms include the 

Incident duration - The time between the occurrence of an 

incident and its clearance [5] and Predictive modelling - the 

process of developing data-driven models to forecast future 

outcomes, such as accident duration [6]. Important road safety 

concepts encompass that related to traffic incident duration 

prediction are the following:  

 Human factors: Elements related to driver behavior, such as 

attention, fatigue which affect decision-making  Vehicle 

factors: aspects related to the vehicle itself, including design, 

maintenance, and safety features  Infrastructure factors The 

design, con- struction, and maintenance of roads and their 

surroundings, 

 Traffic management [10]: Measures and strategies imple- 

mented to improve the efficiency, safety, and sustainability 

of road networks. In our research, we focus on a possible 

contribution to the field of traffic management by employing 

traffic speed disruption detection and performing traffic inci- 

dent duration prediction with higher accuracy. 
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It allows to eliminate user-input errors from reports and 

improve the accident duration prediction performance in 

many traf- fic management centres around the world. To help 

address this issue, in our paper we propose various methods 

for a correct traffic disruption segmentation, the method for an 

association between vehicle detector stations and accident 

reports. 

Another important challenge is that many incident data 

sets around the world are private and not shared for public 

investigation; for those open data sets, there are several miss- 

ing information fields, or even worse, incomplete information 

regarding the traffic conditions in the vicinity of the accidents. 

Even often publish crash data sets are limited in size as well 

and contain a very small number of records. This represents 

a tight constraint when testing one framework over multiple 

countries with different traffic rules and regulations. For our 

studies we have oriented our attention towards two big open 

data sets - CTADS (Countrywise traffic accident data set) 

which contains 1.5 million accident reports and the Caltrans 

Performance Measurement System (PeMS) which provides 

data on traffic flow, traffic occupancy and traffic speed across 

California. Despite both being extensive data sets, vehicle 

detector station readings from PeMS are not associated with 

traffic accident reports from CTADS either by time, location 

or coverage area. The lack of such association makes it 

impossible to analyse the relation between accidents and their 

effects on traffic flow and speed. To address this challenge, 

in our paper we introduce the following mapping algorithm 

which will secure several steps such as: 

• an association of Vehicle Detection Stations (VDS) with 
reported accidents in their proximity, 

• a segmentation of traffic speed disruptions from detector 
readings, 

• an association of detector stations with reported accidents 
(we will further show that this step is necessary due to 

many detected user-input errors in accident reports). 

 

As a result, we obtain traffic disruptions segmented by the traf- 

fic speed associated with reported accidents. This association 

makes it possible to perform various important tasks of the 

accident analysis: prediction of the traffic accident impact on 

the traffic speed based on accident reports, prediction of the 

traffic accident duration derived directly from the effect of 

disruption on the traffic speed (impact-based duration),  

analysis of disruption propagation (each detected disruption 

can be studied for spatial-temporal impact within the traffic 

network). Through this work, we will focus on the prediction 

of the impact-based accident duration and lay the foundation 

for a further research. 

Overall, the main contributions (summarised in Figure 1) of 

our paper are as follows: 

1. We propose a fusion methodology of two large data sets 

(CTADS and PeMS) for a detailed traffic accident analysis. 

To the best of our knowledge, this is the first research study 

proposing the methodology for merging of these two large data 

sets, which allows an association between observed disruptions 

in traffic flow and the reported accidents. 

The research of this nature (fusion of traffic flow and 

accident reports) has been performed before [13], [14], but our 

methodology has the following advantages:  Our disruption 

segmentation model can be fine-tuned via hyper-parameter 

search to find optimal disruption detection rate,  The method 

produces difference estimates proportional to the degree of 

observed disruption, which allows for control of false positives 

rate via threshold choice,  We evaluate multiple compar- ison 

metrics for traffic speed difference estimation,  The 

segmentation algorithm is more complicated and includes 

pre-processing convolution, test of multiple difference met- 

rics, adjustment to selectivity and cyclic shift for difference 

window,  our methodology is modular, where each log- 

ical part can be further refined and studied in a separate 

research. 

2. We propose a novel methodology for the disruption 

mining using a combination of different metrics (which we 

further find to have properties important for disruption seg- 

mentation): a) the Wesserstein metric, which allows us to 

measure the disruption severity and b) the Chebyshev metric, 

which provides a higher selectivity for the disruption mining 

and a rectangular shape of the disrupted segments, allowing 

an automated disruption segmentation. We detail all unique 

properties of both metrics utilized together to allow an accurate 

disruption segmentation. 

3. We perform the estimation of traffic accident disruption 

duration from traffic speed via the above metrics which allows 

us to alleviate user-input errors in accident reports. 

4. We evaluate multiple machine learning models by com- 

paring both the reported and the estimated accident duration 

predictions extracted from traffic speed disruptions. 

5. We introduce a new modelling approach which focuses 

on the amount and shape of the the disruption associated with 

an accident, which allows a further analysis and modelling of 

accident impact. 

In contrast to one of the previous studies [14], which utilized 

Fuzzy Modelling, Multi-layer Perceptron, Weibull Regression, 

and Log-logistic Regression, our methodology that offers a 

higher degree of complexity. We rely on advanced machine 

learning models with the use of a disruption segmentation 

algorithm, which relies on multiple hyper-parameters. This 

design allows fine-tuning to find the optimal disruption detec- 

tion rate. 

Overall, this research forms the foundation for a 

newearly traffic accident disruption detection, traffic 

disruption speed impact analysis and the use of observed 

traffic accident durations for correcting errors in user reports. 

Moreover, this work contributes to our ongoing objective to 

build a real-time platform for predicting traffic congestion and 

to evaluate the incident impact (see our previous works 

published in the  figures. 

The paper is further organised as follows: Section II dis- 

cusses related works, Section III-A presents the data sources 

available for this study, Section III showcases the methodol- 

ogy, Section IV presents the disruption segmentation results, 

showcases the result of data set fusion, Section V presents 

the ablation study and Section VII provides conclusions and 

future perspectives. 

ALOCHANA JOURNAL  (ISSN NO:2231-6329)  VOLUME 14 ISSUE 6 2025

PAGE NO: 59



 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

Fig. 1.  Contributions and data-flow schema for association of traffic speed readings with accident reports. 

 

II. RELATED WORKS 

Multiple studies rely on user-input-based incident reports 

from Traffic Management Centers (TMC) with different 

machine learning models to predict the traffic incident duration 

[17]. The use of traffic flow features is found to be rare 

and mostly specific - incident detection and incident impact 

prediction by using traffic flow [18]. In other words, traffic 

flow data is rarely combined with actual incident reports since 

it requires a higher system complexity and extensive data 

collection. 

 

A. Anomaly Detection Related Works 

There are numerous studies related to the accident detection 

problem from traffic flow using anomaly detection techniques 

[19]. Various methods used for anomaly detection in time 

series are applicable for the task of traffic disruption detection. 

The ability to perform the detection of an actual disruption, 

should give us the actual shapes of disruptions and time 

intervals and allows an in-depth analysis of usual accident 

statistics, including the effect of the type of accident on the 

pattern of disruption in traffic flow. By integrating data on 

the traffic state with accident reports we are able to further 

connect traffic flow disruption patterns to various accident 

characteristics (hour of the day, weather conditions, crash type, 

type of vehicle involved - truck/car [20], the effect of road 

pavement types [21], the road design and the road operation 

[22], etc). 

Anomaly detection in time series data is a critical problem 

in various applications, such as finance and transportation. 

The data generated by many transportation applications (e.g. 

vehicle trajectory or vehicle loop data acquisition) is a contin- 

uous temporal process [23]. The detection of unusual events 

performed in a time-critical manner, is known as streaming 

outlier detection. There are two main aspects of the anomaly 

detection from traffic speed time series: continuity - traffic 

accident can be characterised by performing an abrupt change 

(which can be reformulated as a lack of continuity [24]) 

in traffic speed with steady or also abrupt return of traffic 

state back to normal condition after the accident elimination, 

and novelty - traffic accidents can also generate unusual 

unobserved earlier patterns of change in the traffic speed. 

There are multiple approaches for time series anomaly 

detection:the sliding window technique, enabling contin- uous 

monitoring and timely detection of outliers, Offline Outlier 

Detection (OOD) using predictive and statistical mod- els, 

which processes data collected and analyzed later. This 

approach includes: a) ARIMA Models [25] for capturing 

temporal dependencies, b) Seasonal Hybrid ESD (S-H-ESD) 

[26], which combines ESD and STL techniques for high 

accuracy and robustness in detecting anomalies in time series 

with strong seasonal patterns, and c) LSTM networks [27], 
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a type of recurrent neural network, for capturing long-range 

dependencies and estimating miss-prediction costs using mov- 

ing window predictions. 

Offline Outlier Detection using anomaly detection mod- 

els perform using the following models: a) Isolation Forest 

[28] which is an unsupervised learning algorithm specifically 

designed for anomaly detection. It works by recursively parti- 

tioning the dataset using randomly selected features and split 

values, constructing multiple isolation trees in the process. The 

rationale behind this approach is that anomalies are generally 

more susceptible to isolation when compared to regular data 

points. Consequently, the path length from the root node to 

an anomalous point in the isolation tree is expected to be 

shorter than that for a regular data point. The average path 

length across all trees is then used as an anomaly score, with 

shorter path lengths indicating a higher likelihood of being 

an outlier. The method was also previously used for time 

series anomaly detection [29], b) One-Class SVM [30] which 

is a variant of the Support Vector Machine (SVM) algorithm 

tailored for unsupervised anomaly detection. It aims to find the 

smallest hyperplane that separates normal data points from the 

origin in the feature space, thereby constructing a boundary 

around the normal data. This is achieved by solving a quadratic 

optimization problem that maximizes the margin between the 

data and the origin. Any data point that falls outside the 

boundary is considered an anomaly. 

Streaming outlier detection is important for timely detection 

of unusual events, such as traffic accidents. Continuity and 

novelty are the two main aspects of anomaly detection in traffic 

speed time series. There are multiple approaches to perform 

anomaly detection from time series, including the sliding win- 

dow technique, offline outlier detection using predictive and 

statistical models, and offline outlier detection using anomaly 

detection models. 

 

B. Data Sets for Incident Duration Prediction 

Analysis of the effect of traffic incidents has been performed 

previously using Caltrans PeMS data, where the measure of 

incident impact was represented as a cumulative travel time 

delay [43], which is an aggregated value. However, traffic 

state recovery from disruptions is not necessarily following 

a single pattern - it may be slowly dissipating, we may 

observe secondary crashes, it may have a high or low impact, 

etc. Traffic accident duration prediction methodology relies 

on reported traffic accidents, but actual reports may contain 

user-input errors and be misaligned with the actual shape of 

disruption produced by the accident. Therefore, the approach 

for disruption segmentation may provide the accident duration 

estimated from the actual shape of disruption in traffic flow. 

 

III. METHODOLOGY 

The new framework we propose in this paper is repre- 

sented in Figure 1 which we support across some initial 

definitions for our modelling approach (see next sub-section). 

First, we associate the road segments with their corresponding 

Vehicle Detector Stations (VDS) from the Caltrans PeMS 

data set, as well with the locations of reported accidents (see 

Algorithms 1 and 2 proposed in sub-section III-D). The main 

outcome of this algorithm is that traffic accidents will get 

associated with the traffic flow, speed and occupancy readings 

from the VDS stations. 

Second, we propose a new algorithm for early disruption 

detection and segmentation, detailed in sub-section III-E. By 

detecting disruptions that occurred in time-space proximity of 

reported traffic accidents, we obtain the estimated traffic 

accident duration. This gives us much more information to 

include in the model training than just the simple accident 

duration. 
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Fig. 3.  CTADS: Bing - Histogram for recorded accident extent. 

 

 

Fig. 4.  CTADS: Bing - ECDF for recorded accident extent. 

 

TABLE I 

STATISTICS ON ACCIDENT EXTENT FROM CTADS (BING PART) DATA SET 
 

 

 

 

 

 

 

 

Fig. 5. 1) PeMS data set area coverage for San-Francisco (the map is available 
at https://pems.dot.ca.gov/) 2) Mapping of the Vehicle Detection Stations from 
PeMS data set. OpenStreetMap excerpt showing San Francisco. Available 
at:https://www.openstreetmap.org/#map=12/37.7612/-122.4395. 

 

aggregated 5-minute measurements of traffic flow, speed and 

occupancy across California. We decided to extract the data 

for the area of San-Francisco (see Figure 5a), which con- 

tains 83 Vehicle Detection Stations (VDS) placed in that area 

(see 5b), and we try to associate each traffic accident occurred 

with each of San-Francisco VDS in their 500m proximity 

using the algorithm detailed in the following section. In total, 

from 9,275 accidents in the area (extracted from CTADS) we 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. RESULTS 

A. Data Exploration and Setup 

CTADS data set contains traffic accident reports, which 

after an initial data mining investigation, we found to contain 

several user-input errors; for example, a lot of traffic accident 

durations have been rounded to 30 or 360 minutes (see 

Fig. 7d)); or the incident start time which was reported is 

unrelated to any disruptions observed by the vehicle detector 

stations in the proximity - see Figure 7 in which we have 

provided two different examples of speed recorded during two 

different accidents A-5198 and A-4490; the red lines indicate 

the official reported start and end time of the accidents, while 

in reality the accidents have had a long lag in spreading across 

the network - see Fig. 7a) or were reported much later that 

the official speed drop was recorded - see Fig. 7b). 

At this step we observed a significant amount of 

user-input errors in accident reports, which affect the accident

can be used to construct a detailed accident timeline that 

highlights the key events and their corresponding degrees of 
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combined with the semantic segmentation methods to create 

a joint machine learning model. This integrated model could 

leverage both the event-driven dynamic context and the math- 

ematical metrics for segmentation to improve its predictions 

for incident duration and severity. By connecting these two 

research approaches, a more comprehensive framework for 

analyzing traffic accidents and predicting disruption durations 

can be developed. This integrated approach would benefit 

from the strengths of both methods, enabling more accurate 

and reliable predictions for incident durations. Ultimately, 

this could lead to improvements in road safety, emergency 

response, and traffic management. 

In conclusion, image segmentation methods can be 

employed to not only segment the accident scene but also 

to quantify the degree to which an accident is observed in 

an image. This information can be used to create an accident 

timeline that reflects the progression of the accident, the sever- 

ity of the event, and the critical moments when interventions 

or safety measures could have been taken. This approach 

in combination with our proposed disruption segmentation 

method can potentially contribute to better accident analysis, 

road safety improvements, and more effective emergency 

response strategies. 

 

B. Automated Disruption Segmentation Results 

Figure 9 presents the results obtained from our algorithm for 

the automated disruption segmentation. The segmentation line 

(dotted blue) represents the estimated disruption intervals rep- 

resented as 0 and 1 to perform our visualisation investigation 

better. Figure 9a) shows that there may be multiple observed 

disruptions in a 300*5=1500 time interval. Due to errors in 

accident reports regarding the starting time and the duration 

of the accident, it is non-trivial to determine which disruption 

is associated with the accident. The situation may be easier in 

the case when only one disruption is observed during the day. 

According to our algorithm, we select the largest disruption 

on the day the accident was reported. Figures 9b) and 9c) 

highlight additional specific situations which need to be con- 

sidered:higher traffic speed at the end of the day than 

observed from the monthly profile, unstable traffic speed 

approaching normal traffic conditions with high frequency,  

slight misalignment of disruption intervals with the visually 

observed disruption intervals. All these problems can be 

addressed by using manual segmentation with deployment of 

Deep Learning models since there are advanced computer 

vision methods proposed in recent years (e.g. autoencoders 

for segmentation). 

 

C. Comparison of Estimated, Reported and Manual Markup 

of Accident Durations 

There is a significant difference between the estimated and 

the reported accident durations that we would like to highlight: 

1) the reported accident durations contain a large amount of 

30 and 360 minutes duration values (nearly 40% of data - see 

Figure 10a)) while the estimated accident durations using our 

approach have an average duration of 58 minutes, while the 

reported is 108 minutes (which is by assumption skewed due 

 

to 360 placeholder values), the estimated accident dura- tions 

are distributed between 90 and 355 minutes (0.10 and 0.90 

quantiles correspondingly) , while the reported durations are 

distributed between 29 and 360 minutes (see11 a) and 

manually detected disruptions distributed between 75 and 440 

minutes), which highlights that disruptions observed from 

traffic speed are much shorter than reported in the original data 

set, 4) There is no noticeable correlation between observed and 

reported durations with high amount of horizontal anomalies 

in reported accident durations (see Figure11). Traffic accident 

duration is most common to follow log-normal or log-logistic 

distribution  and on resulting plots, we see that accident 

reports are found to represent log-normal distribution to less 

extent than manual markup or estimated accident duration. 

To perform the ablation study, we perform a manual markup 

of disruptions observed in traffic speed for 800 accidents, 

which will be discussed in the corresponding section. 

 

D. Extraction of Disruption Shapes 

In previous subsections we applied a Chebyshev metric 

to perform segmentation of disruptions. To analyse the dis- 

ruption impact we apply the Wasserstein difference between 

monthly speed profile and daily traffic speeds and extract 

the corresponding disruption intervals. Wasserstein difference, 

originally named an Earth Mover distance, has an intuitive 

physical interpretation - the minimum “cost” of altering one 

pile of earth into the other, which is assumed to be the amount 

of earth that needs to be moved times the mean distance it has 

to be moved. In application to traffic state, it is the minimum 

amount of work necessary to alter the traffic state to disrupted 

condition, or in other words - the amount of disruption. 

We compare normalized metric values since every at every 

vehicle detector station there is a different average traffic 

speed. As in our proposed algorithm, we use a 12-units moving 

window (one hour) to estimate the Wasserstein difference 

between traffic speed measurements and provide the plot for 

the first 40 segmented disruptions, which allows for shape 

analysis of traffic disruption amount (see Figure 12): We 

observe the similarity between multiple disruptions - they 

have a ‘hill’ shape, there are secondary (double ‘hill’) and 

long-lasting disruptions. The observed shapes can be defined 

through the parametric equation to perform the classification 

of disruption effects and facilitate the prediction of disruption 

impact timeline since we observe that high-peak fast-ascending 

disruptions have a probability to end sooner than slowly 

ascending ones. The analysis of the speed of ascendance has 

potential to perform the early classification of disruptions, 

which is planned for further research. 
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TABLE II 

MEAN ABSOLUTE ERROR (MAE) RESULTS 
 

 

 

 

 

 

The highest RMSE is reported by the SVM model, with 

an estimated value of 208.29. As with the MAE results, 

the CatBoost model outperforms all the other models by a 

significant margin. All the methods use default parameters 

as they are presented in Scikit-learn [54] and corresponding 

modules. 

When we are using accident reports to predict the estimated 

accident duration, we obtain a better performance using the 

RMSE metric across all the regression models, which may be 

connected to the lower amount of long accident durations than 

reported. 

These best-performing models are all complex tree methods, 

which utilize multiple learners (via ensembles and boosting) to 

gain better predictive performance. They work well with mixed 

types of data (numeric and categorical), can capture non-linear 

relationships, and are less prone to overfitting. On the contrary, 

Linear Regression assumes a linear relationship between the 

input variables and the single output variable, KNN assumes 

that similar instances are near to each other, and SVM assumes 

that the data is linearly separable by a hyperplane in a feature 

space. Low performance of these methods shows that these 

assumptions may not align well with the data in case of traffic 

accident reports. 

The reported duration, as provided directly from the source 

or via some other form of direct measurement is subject to 

more variability due to factors such as measurement errors 

(incorrectly reported duration), reporting biases (“rounded” 

30 and 360 minute durations), or other uncontrolled external 

influences (late accident detection, disruption effects mis- 

aligned to reported accident timeline). We expect that correct 

estimation of the incident duration contributes to reduction in 

modelling complexity due to reduced effect of outliers, bias 

and errors on prediction performance. 

In contrast, the manual and estimated durations are derived 

using more controlled processes and algorithms. The manual 

duration calculated by a consistent procedure, minimizing the 

room for error. The estimated duration, relies on parametric 

model, would also tend to have less variation due to the model 

fine-tuning to minimize prediction error based on the available 

data. 

Overall, the CatBoost model consistently outperforms all 

the other models across all metrics. 

 

 

TABLE III 

ROOT MEAN SQUARED ERROR (RMSE) RESULTS 
 

 

 

 

 

 

 

 

 

 

Fig. 13. Manual markup and algorithm segmentation comparison. Time series 
segments represented as binary values of 0 and 1. 

 

 

V. ABLATION STUDY 

In this paper, we propose using the F1 score to estimate 

the quality of time interval segmentation in binary time series 

(see Figure 13) in which we provide two different examples of 

different stations with both manual markups of the incidents - 

red markups- and our segmentation algorithms - blue markups- 

that is more efficient at detecting multiple incidents throughout 

the 24h time period and not only one single isolated event. 

The value on Y-axis shows a positive 1.0 value if the interval 

contains the disruption. Examples are provided for Accidents 

with ID A-1024015 and A-1034382 from CTADS data set. 

Given a ground truth dataset with original reported acci- 

dent duration, we perform a manual labelling of segments 

and obtain a set of predicted segments obtained from our 

automated segmentation algorithm, we compute the precision 
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and the recall of the algorithm, and then combine them into a 

single F1 score. 

F1-score is a popular metric used to evaluate the quality of 

binary classification models defined as follows: 

precision = 
true positives 

true positives + false positives 

recall = 
true positives 

true positives + false negatives 

where true positives are the number of correctly classified 

positive instances, false positives are the number of negative 

instances classified as positive, and false negatives are the 

number of positive instances classified as negative. 

F1-score is defined as the harmonic mean of precision and 

recall, given by: 

F1-score = 2 · 
precision · recall 

precision + recall 

F1-score ranges from 0 to 1, with higher values indicating 

a better classification performance. 

In the case where a time series is represented as a series 

of points with values of 1 for segmented intervals and 0 for 

intervals with no segments, F1-score can be applied to estimate 

the quality of the time interval segmentation. 

To apply the F1-score, we need a ground truth dataset 

with manually labelled segments (and we obtain this manual 

markup for 820 accidents), and a set of predicted segments 

obtained from our automated segmentation algorithm. We can 

use these two sets to compute the precision and recall of the 

segmentation algorithm, and then combine them into a single 

F1-score. 

Precision measures the proportion of true positives among 

all the predicted positives. In the context of time interval 

segmentation, the precision measures the accuracy of the 

algorithm in detecting the true segments. The Recall measures 

the proportion of true positives among all the actual positives. 

In the context of time interval segmentation, the recall mea- 

sures the completeness of the algorithm in detecting all the 

true segments. 

To apply the F1-score to estimate the quality of time interval 

segmentation, we can compute the precision and recall for 

each segment, and then compute the overall F1-score as the 

weighted average of precision and recall, weighted by the 

number of segments. This provides a single metric that reflects 

the quality of the time interval segmentation. 

As a result (see Figure 14), the official reported incident 

segmentation is found to be very off (with a mean F1-score 

of 0.29 - Figure 14a)); next, the segmentation done by the 

algorithm while selecting only the interval closest to the 

reported timeline yields the highest average F1-score of 0.51 - 

Figure 14c)) with a peak at 0.3; lastly, when considering mul- 

tiple segmented incident intervals detected from our algorithm, 

it produced a slightly lower F1 score of 0.47 - Figure 14b)), but 

more evenly distributed. Overall, the algorithm performance 

that we propose in this paper yields a higher precision in 

detecting disruptions from time series of traffic speeds than 

from the reported accident timeline. The use of multiple 

segments produced by the algorithm can highlight multiple 

disruptions while producing just a slight decrease in the 

quality of results. The error for multiple intervals segmentation 

increases because more additional intervals are considered 

in the evaluation of the metric, which may lay outside of 

originally marked intervals (see Figures 13 and 9). 

 

A. False Positives Rate Analysis 

The issue of false alarms in the incident detection task 

can be significant. Traffic authorities may need the control 

over incident detection specificity. Since our segmentation 

algorithm provides real values after applying a difference 

metric, the value of false positives can be controlled by 

selecting an appropriate threshold of binarization. We provide 

a receiver operating characteristic curve (ROC) curve for 

comparison across total merged timeline of incidents and 

represent manual and estimated segmentation procedures as a 

binary classification problem. Parameters like granularity and 

binarization threshold can be fine-tuned according to specific 

metric (e.g. Area under ROC curve, F1-score or heuristics 

of metrics) to increase the amount of true positives while 

reducing the amount of false positives. We utilized F1-score 

as it able to grasp both of these values in a single formula. 

As shown on Figure 15, our proposed methodology, even 

without the tuning of hyper-parameters, allows to maintain 

a high detection rate while keeping the false alarm rate low. 

We further look into specifics of disruption detection for 

various accidents (see Figures 16 and 17). For some accidents, 

high detection rate cannot be achieved without increasing the 

false positives rate. It is important to note that the selection 

of the binarization threshold plays a crucial role in controlling 

algorithm performance. A lower threshold might increase the 

sensitivity, thereby escalating the detection rate, but at the 

cost of specificity, leading to more false positives. Conversely, 

a higher threshold might reduce false alarms but may also 

miss some real incidents, thus lowering the detection rate. 

Therefore, the end users can fine-tune the parameters accord- 

ing to their specific needs, demonstrating the flexibility and 

adaptability of our proposed methodology. 

 

B. Parameter Importance Study 

For our model, we have the following variables and their 

intervals of variation: 

• gran: Granularity, an integer value controlling the level 

of detail (moving window size) in the metric estimation 

function. In the provided search space, the range of gran 

is [2, 40] with a step of 1. Default value is 12. 

• kernel_size: A list of float values used as weights in the 

dilation convolution operation. The search space for the 

kernel is the size of the convolution [1, . . . 4], float values 

primarily intended to implement pre-processing operation 

for the day time-series. Default value is 3. 

• selectivity: A float value between 0.01 and 4.0 that deter- 
mines the power coefficient in post-processing difference 

estimations Default value is 2.0. 

• shift: An integer value between -32 and +32 that repre- 
sents a cyclic shift of the resulting time series to attribute 
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Fine-tuning of the disruption segmentation algorithm can be 

performed automatically using hyper-parameter search for best 

performance on alternative sources of data,Sensitivity- 

specificity control: maintaining high incident detection rates 

while minimizing false alarms is a key challenge. The disrup- 

tion segmentation algorithm allows us to estimate the “degree” 

of disruption before applying the binarization threshold. This 

property allows for false-alarm control using fine-tuning of 

the detection threshold. Balancing sensitivity (identifying real 

incidents) and specificity (avoiding false alarms) often involves 

trade-offs and can be fine-tuned to specific data set. 

In urban networks with hundreds of measurement locations, 

the data retrieval is a bottleneck, since each accident report 

will require a request for daily and fortnight measurements 

at specific detectors. Depending on the speed of VDS data 

retrieval, the amount of data that can be obtained in an 

acceptable amount of time can be limited. 

The code for the paper can be found by the fol- 

lowing link: https://github.com/Future-Mobility-Lab/AAA- 

toolkit/tree/main. 

The Table IV presented below provides a summary of the 

key parts involved in the Accident Analysis& Association 

(AAA) Toolkit codebase. Each row represents a specific seg- 

ment of the code, outlining the corresponding inputs required 

and outputs produced for each segment. The sequence of 

code parts indicates the flow of data and the transformation 

processes that occur from acquiring the initial raw data to 

ultimately applying segmentation algorithms on the compiled 

information. 

 

VI. CONCLUSION 

Our methodology aims to automatically detect, segment, 

and extract traffic disruptions and accidents using distance 

metrics. This approach improves incident prediction accuracy 

across multiple machine learning models and provides better 

fit to manual markup of observed traffic speed disruptions. 

By obtaining the intervals and shapes of traffic disruptions, 

we can model the impact of accidents with greater precision, 

using traffic state measurements rather than just reported 

parameters (duration, start time, etc). This approach provides 

more data on the accident and allows us to study accident 

impacts in greater detail. 

 

A. Relevance of This Work Can be Summarized in Following 

Points 

1) Enhancement of Traffic Management Systems: Integrate 

the proposed early detection and disruption segmentation 

algorithm into existing traffic management systems to improve 

and automate incident detection and corresponding data col- 

lection. This will help to minimize congestion and the overall 

impact of incidents on traffic flow, 2) highlight of reporting 

errors to standardize data reporting: Establish standardized 

guidelines and protocols for reporting traffic incidents, includ- 

ing the accurate reporting of the location, start and end times, 

number of lanes affected, and other relevant details; this will 

ensure that data-driven models can accurately predict incident 

severity and disruption length, 3) highlight the necessity of 

creating of data standards policies across countries for col- 

lecting necessary traffic accident information, 4) development 

of Incident Response Strategies by utilizing the improved 

incident prediction models to develop data-driven incident 

response strategies, including the dynamic traffic rerouting 

and real-time traffic guidance; this will help to mitigate the 

impact of traffic incidents on road users and reduce the risk 

of secondary incidents; 5) Data Fusion for a better traffic 

accident analysis: due to observed improvement in the quality 

of prediction arising from data fusion, traffic Authorities can 

consider integrating data sets from private companies for 

jointly analysing traffic datasets of various types to improve 

traffic safety by improving accuracy of traffic incident duration 

prediction. 

 

B. Future Research in This Area 

1) Algorithm’s complexity can be expanded by incorporat- 

ing custom kernels, which can be found using hyper-parameter 

search, 2)Disruption measurements obtained over time can 

enable the prediction of traffic incident impact propagation 

with greater accuracy than relying solely on reported values, 

3) The proposed methodology can be extended to include 

disruptions beyond accidents, such as construction or road 

closures, which can improve the accuracy of impact prediction, 

4) Further improvement can also be achieved by performing 

data fusion and incorporating external data sources, such as 

weather and events, into the incident impact prediction models. 

We are currently modelling the cascading effect on traffic 

disruptions and how these can be automatically identified 

based on multiple incoming traffic state streams; the main 

challenge of detecting subsequent incidents lie in the time-span 

duration of the first incident which is normally stochastic in 

nature. 

 

C. Limitations of This Work 

The current modelling approach has been applied to a San 

Francisco data set due to its public availability and easiness 

to access. However, we would like to test the approach on 

multiple other countries and incident databases across the 

globe; the main challenge is the lack of both traffic states 

and traffic accidents logs to be released with synchronised 

timelines. 
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