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ABSTRACT: This work introduces a novel approach to time series forecasting by integrating 

Long Short-Term Memory (LSTM) networks with BERT-based textual embeddings. 

Traditional forecasting models primarily rely on numerical data, often overlooking the valuable 

contextual information embedded in text. With the advent of advanced natural language 

processing (NLP) models like BERT, it is now feasible to extract rich, contextual 

representations from textual content. 

In our method, BERT is employed to generate dense embeddings from relevant textual data 

such as user comments, news articles, or social media posts. These embeddings are then 

combined with numerical features to create a unified input for an LSTM network. LSTMs are 

well-suited for time series tasks due to their ability to capture long-term temporal dependencies, 

making them ideal for modeling complex sequential patterns. 

The hybrid model is evaluated on a dataset containing both textual and numerical components. 

Its performance is compared with traditional forecasting methods that use only numerical 

inputs. Evaluation metrics including Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and R-squared (R²) indicate that the hybrid model significantly outperforms 

conventional models, confirming the added predictive power of textual data. 

In conclusion, the integration of BERT transformations with LSTM networks not only 

improves forecasting accuracy but also broadens the analytical scope by incorporating text-

driven signals. This approach is especially beneficial in domains like social media analysis, 

healthcare, and finance, where textual data plays a crucial role in shaping temporal trends. 
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1. INTRODUCTION: Artificial Intelligence (AI) simulates human intelligence in machines, 

enabling them to learn, reason, and solve problems. It powers applications ranging from virtual 

assistants to autonomous vehicles. A key subset of AI is machine learning (ML), which allows 

computers to learn from data using techniques like supervised and unsupervised learning. Deep 

learning, a further subset of ML, uses neural networks with multiple layers to analyze large 

datasets, excelling in tasks like image and speech recognition, natural language processing, and 

time series analysis such as stock prediction and weather forecasting. 

Social media has revolutionized communication and information sharing through platforms 

like Facebook, Instagram, Twitter, TikTok, and YouTube. It enables users to connect, share 
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content, and engage with communities globally, while also empowering businesses and 

political movements to reach vast audiences. However, it presents challenges, including 

privacy concerns, misinformation, and algorithm-driven echo chambers that reinforce existing 

beliefs. Despite these issues, social media remains a powerful influence on modern society, 

shaping how people interact, consume information, and perceive the world. 

For children under 12, social media offers limited but notable benefits when used with 

supervision and time restrictions. Educational content such as videos and learning games can 

support schoolwork and spark interest in various subjects. Early exposure to digital platforms 

also builds foundational digital literacy and technical skills. However, excessive use can lead 

to reduced physical activity, poor sleep, and hindered social development. It is crucial for 

parents to establish clear guidelines to ensure social media supports healthy growth and 

development rather than hindering it. 

2. METHODOLOGY 

2.1 Data Description 

The dataset used in this study comprises synchronized numerical and textual data tailored for 

time series prediction. Numerical features include metrics like engagement statistics, sales 

figures, or sensor readings, forming the quantitative base for forecasting. Aligned textual data 

sourced from social media, news, or user comments captures qualitative factors such as 

sentiment and public opinion that may influence time series behavior. To extract meaningful 

insights, we employ BERT to convert the text into dense, contextual embeddings, enriching 

the dataset with semantic information and enhancing model performance. 

2.2 Data Preprocessing 

Preprocessing ensures data consistency and quality. Numerical features are normalized using 

MinMaxScaler to maintain uniform scaling and improve model training. Missing values are 

addressed through forward filling, preserving temporal continuity. For textual data, BERT 

transforms each entry into high-dimensional embedding’s that capture contextual meaning. 

This embedding’s are integrated with the normalized numerical features, producing a 

comprehensive dataset used to train the hybrid LSTM model for more accurate time series 

forecasting. 

2.3 Feature Extraction 

Feature extraction combines BERT-derived textual embedding’s with normalized numerical 

features to create a unified and rich feature set. This approach allows the model to capture both 

quantitative trends and qualitative signals, such as sentiment or event-driven influences. By 

integrating diverse data types, the model gains a more complete understanding of the factors 

shaping the time series, ultimately improving prediction accuracy and interpretability. 
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2.4 Model Architecture 

 
Figure 1: LSTM-BERT Architecture  

 

Detailed Explanation: 

1. Data Collection: Collect social media posts along with their timestamps to form the 

dataset. 

2. Preprocessing: Clean the text data by removing noise and unnecessary elements, and 

align the text with corresponding timestamps. 

3. BERT Embedding: Use a BERT model to transform the cleaned text into numerical 

Transformations that capture the semantic meaning. 

4. Time Series Preparation: Create sequences of BERT Transformations based on the 

order of timestamps, ensuring consistent intervals if necessary. 

5. LSTM Model: Feed the sequences of Transformations into an LSTM model. The input 

layer processes the sequences, LSTM layers capture the temporal dependencies, and 

the dense layer generates the final prediction. 

6. Prediction: Output the predicted future values or trends in the social media time series 

data. 

The combined BERT-generated textual embedding’s and normalized numerical features are 

fed into a two-layer LSTM network, which captures long-term dependencies in sequential data. 

The first LSTM layer outputs representations for all time steps, while the second refines these 

to learn higher-level patterns. 
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These are passed to dense layers, which map temporal features to final predictions using 

activation functions and linear transformations, improving accuracy. 

The model is trained using Mean Squared Error (MSE) and optimized with techniques like 

Adam. A training-validation split helps assess generalization and guide hyperparameter tuning, 

ensuring robust and balanced forecasting performance by leveraging both textual and 

numerical data. 

3. EXPERIMENTS AND RESULTS 

3.1 Experimental Setup 

To evaluate our hybrid model, the dataset is split into 80% training and 20% testing, ensuring 

a fair assessment of generalization. We employ a sliding window approach with a time step of 

10, where each input sequence comprises 10 consecutive time steps of aligned numerical 

features and BERT-transformed textual embedding’s. This setup captures meaningful temporal 

dependencies suitable for the LSTM network. 

The model is trained for 20 epochs with a batch size of 32, balancing performance and 

computational efficiency. Validation monitoring during training helps detect overfitting and 

guides parameter optimization. Evaluation is based on Mean Squared Error (MSE), with Root 

Mean Squared Error (RMSE) and R-squared (R²) used for supplementary analysis. These 

metrics are calculated on both training and testing sets to verify robustness and predictive 

accuracy. 

This setup provides a structured framework for assessing the model’s ability to learn from both 

numerical and textual data effectively. 

3.2 Evaluation Metrics 

To comprehensively evaluate the forecasting performance, we utilize four key metrics: 

Mean Squared Error (MSE): Measures the average squared difference between predicted and 

actual values, penalizing larger errors more heavily. 

Root Mean Squared Error (RMSE): The square root of MSE, offering interpretable error 

magnitudes in original units. 

Mean Absolute Error (MAE): Computes the average absolute difference, providing a more 

outlier-resistant metric. 

R-squared (R²): Indicates the proportion of variance in the target explained by the model, with 

values closer to 1 denoting better fit. 

3.3 Results 

The hybrid BERT-LSTM model outperforms baseline models that use only numerical data, 

showing a clear reduction in MSE and higher R² scores. This reflects improved predictive 

accuracy and a stronger ability to capture data variance by incorporating contextual features 

from textual data. 
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The loss curves for both training and validation exhibit a steady decline, with a small gap 

between them, indicating effective learning, strong generalization, and minimal overfitting. 

These results confirm the model’s robustness and reliability across both seen and unseen data. 

Table 1: Performance Metrics 

Metric Train Value Test Value 

MSE 0.010619317232952287 0.011224585423731294 

RMSE 0.10305007148445985 0.10594614397764221 

MAE 0.08960377068278637 0.09313175621184897 

R² -0.10947283311433975 -0.0717259362813838 

 

The MSE, RMSE, MAE, and R² values for the training set and the test set are presented, 

providing a clear view of how the model performs across different data subsets. Lower MSE 

and RMSE values, coupled with higher R² scores, confirm the effectiveness of our model in 

delivering accurate and reliable forecasts. The performance metrics suggest that the hybrid 

approach not only enhances predictive accuracy but also offers robust performance across 

different evaluation criteria. 

 

Figure  2: Training and Validation Losses 

Training and validation losses are key indicators of a model’s learning progress and 

generalization ability. In this study, Mean Squared Error (MSE) is used as the loss function. 

Training Loss: Calculated after each epoch, it measures the average squared error between 

predictions and actual values on the training set. A consistent decrease indicates effective 

learning and improved fit to the training data. 

Validation Loss: Computed on unseen validation data, it reflects the model’s ability to 

generalize. A parallel decline in validation loss suggests the model performs well on new data 

and is not overfitting. 
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Loss Comparison: Ideally, training and validation losses should both decrease and converge. 

A small gap between them indicates good generalization, while a large gap may signal 

overfitting. 

Loss Curve Visualization: Plotting both losses across epochs helps track training progress. 

Gradual and stable declines in both curves indicate a robust and well-generalized model. 

 

Figure 3: Original Data and Predictions 

Analyzing the original data alongside model predictions is essential for evaluating the accuracy 

and reliability of the forecasting model. This comparison offers both visual and quantitative 

insights into how well the model captures the actual trends. 

Original Data Visualization: Plotting the original time series reveals trends, seasonality, and 

irregularities, serving as a baseline for evaluating predictions. 

Model Predictions: The model's forecasts are overlaid on the original data to visually assess 

how closely they align. Accurate models will show predictions that closely track the actual data 

trajectory. 

Train and Test Predictions: By comparing predictions on both training and unseen test data, we 

can evaluate the model's ability to generalize beyond the data it was trained on. 

Performance Metrics: Quantitative measures like MSE, RMSE, MAE, and R² assess the 

prediction accuracy. Lower error values and higher R² scores indicate stronger performance. 

Visualization of Results: Overlay plots of actual vs. predicted values provide intuitive insights 

into the model's performance, highlighting strengths and any areas needing improvement. 
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Figure  4: Actual vs Predicted Training Values 

Model performance on training data is evaluated by comparing actual vs. predicted values. 

Visual alignment indicates effective learning, while discrepancies highlight areas for 

improvement. 

Metrics like MSE, RMSE, and MAE quantify prediction accuracy—lower values suggest 

better fit. Tracking training loss over epochs reveals how well the model minimizes error, 

helping identify optimal learning. 

Analyzing prediction gaps can guide refinements such as hyperparameter tuning, architectural 

adjustments, or improved feature engineering. Combined visual and numerical evaluations 

ensure the model effectively captures patterns and enhances forecasting reliability. 

 
Figure 5: Actual vs Predicted Testing Values 
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Evaluating the model on test data is essential to assess its ability to generalize to unseen data. 

A visual comparison of actual versus predicted values helps determine how closely the model 

follows real trends over time. Ideally, predictions should align well with actual data, indicating 

successful pattern learning. 

In addition to visuals, quantitative metrics such as MSE, RMSE, MAE, and R² provide 

numerical insights into prediction accuracy. Lower error values (MSE, RMSE, MAE) indicate 

better performance, while higher R² values suggest stronger explanatory power. 

These evaluations also help detect overfitting—where a model performs well on training data 

but poorly on test data. Strong test performance confirms the model's generalization capability, 

crucial for real-world forecasting. 

Lastly, analyzing test prediction errors offers insights for model improvement, guiding 

adjustments in architecture, parameters, or feature engineering to boost forecasting accuracy 

and robustness. 

4. DISCUSSION 

The results of this study demonstrate the effectiveness of integrating BERT Transformations 

with numerical features for time series forecasting. By combining contextual insights from 

textual data with quantitative information, the model achieves a richer feature set that 

significantly enhances prediction accuracy. 

The LSTM network effectively captures temporal dependencies, enabling the hybrid model to 

learn complex patterns from both data types. This integration allows for more nuanced and 

informed forecasting, particularly in scenarios where external textual information influences 

time series trends. 

Overall, the proposed approach leveraging BERT embeddings and LSTM networks offers a 

robust and accurate solution for forecasting tasks involving mixed data sources. The findings 

highlight the value of combining semantic and numerical insights through advanced deep 

learning techniques to improve predictive performance in time series analysis. 

5. FUTURE WORK 

Future work could explore using BERT variants like RoBERTa or DistilBERT to improve the 

integration of textual features in time series forecasting. Testing different architectures may 

enhance model performance and prediction accuracy. 

Expanding the dataset with diverse textual sources can improve contextual understanding, 

reduce bias, and boost generalization. Additionally, incorporating multimodal data—such as 

images or structured inputs—offers potential to further enhance forecasting accuracy and 

model versatility. 
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